RUS  ENG
Full version
PEOPLE

Kerov Sergei Vasil'evich

Publications in Math-Net.Ru

  1. Four drafts on the representation theory of the group of infinite matrices over a finite field

    Zap. Nauchn. Sem. POMI, 344 (2007),  5–36
  2. Coherent Random Allocations, and the Ewens–Pitman Formula

    Zap. Nauchn. Sem. POMI, 325 (2005),  127–145
  3. Multidimensional hypergeometric distribution, and characters of the unitary group

    Zap. Nauchn. Sem. POMI, 301 (2003),  35–91
  4. The Markov–Krein correspondence in several dimensions

    Zap. Nauchn. Sem. POMI, 283 (2001),  98–122
  5. Equilibrium and orthogonal polynomials

    Algebra i Analiz, 12:6 (2000),  224–237
  6. Anisotropic Young Diagrams and Jack Symmetric Functions

    Funktsional. Anal. i Prilozhen., 34:1 (2000),  51–64
  7. The algebra of conjugacy classes in symmetric groups, and partial permutations

    Zap. Nauchn. Sem. POMI, 256 (1999),  95–120
  8. On an Infinite-Dimensional Group over a Finite Field

    Funktsional. Anal. i Prilozhen., 32:3 (1998),  3–10
  9. Rooks on Ferrers boards and matrix integrals

    Zap. Nauchn. Sem. POMI, 240 (1997),  136–146
  10. Subordinators and the actions of permutations with quasi-invariant measure

    Zap. Nauchn. Sem. POMI, 223 (1995),  181–218
  11. Stick breaking process generated by virtual permutations with Ewens distribution

    Zap. Nauchn. Sem. POMI, 223 (1995),  162–180
  12. Asymptotics of the separation of roots of orthogonal polynomials

    Algebra i Analiz, 5:5 (1993),  68–86
  13. The Plancherel growth of Young diagrams and the asymptotics of alternating sequences

    Dokl. Akad. Nauk, 333:1 (1993),  8–10
  14. Transition Probabilities for Continual Young Diagrams and the Markov Moment Problem

    Funktsional. Anal. i Prilozhen., 27:2 (1993),  32–49
  15. The asymptotics of interlacing sequences and the growth of continual Young diagrams

    Zap. Nauchn. Sem. POMI, 205 (1993),  21–29
  16. A $q$-analog of the hook walk algorithm and random Young tableaux

    Funktsional. Anal. i Prilozhen., 26:3 (1992),  35–45
  17. On the combinatorics of rational representations of the group $GL(n,\mathbb{C})$

    Zap. Nauchn. Sem. POMI, 200 (1992),  83–90
  18. Hall-Littlewood functions and orthogonal polynomials

    Funktsional. Anal. i Prilozhen., 25:1 (1991),  78–81
  19. Stochastic processes with common contransition probabilities

    Zap. Nauchn. Sem. LOMI, 184 (1990),  169–181
  20. On representations with maximal dimension of symmetric groups

    Zap. Nauchn. Sem. LOMI, 172 (1989),  160–166
  21. The invariants algebra for the action of $Sp(2m)$ in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$

    Zap. Nauchn. Sem. LOMI, 172 (1989),  68–77
  22. Combinatorial examples in the theory of $AF$-algebras

    Zap. Nauchn. Sem. LOMI, 172 (1989),  55–67
  23. Characters and realizations of representations of the infinite-dimensional Hecke algebra, and knot invariants

    Dokl. Akad. Nauk SSSR, 301:4 (1988),  777–780
  24. Realizations of representations of the Brauer semigroup

    Zap. Nauchn. Sem. LOMI, 164 (1987),  189–193
  25. Realizations of ${}^\ast$-representations of Hecke algebras and Young's orthogonal form

    Zap. Nauchn. Sem. LOMI, 161 (1987),  155–172
  26. On asymptotic distribution of symmetry types of high rank tensors

    Zap. Nauchn. Sem. LOMI, 155 (1986),  181–186
  27. Combinatorics Bethe ansats and representations of symmetric group

    Zap. Nauchn. Sem. LOMI, 155 (1986),  50–64
  28. Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group

    Funktsional. Anal. i Prilozhen., 19:1 (1985),  25–36
  29. Locally semisimple algebras. Combinatorial theory and the $K_0$-functor

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 26 (1985),  3–56
  30. The Robinson–Schensted–Knuth correspondence and the Littlewood–Richardson rule

    Uspekhi Mat. Nauk, 39:2(236) (1984),  161–162
  31. On $W$-graphs of the symmetric group representations

    Zap. Nauchn. Sem. LOMI, 123 (1983),  190–202
  32. Numerical data on the typical dimensions of irreducible sepresentations of symmetric groups

    Zap. Nauchn. Sem. LOMI, 123 (1983),  152–154
  33. The $K$-functOr (Grothndieck group) of the infinite symmetric group.

    Zap. Nauchn. Sem. LOMI, 123 (1983),  126–151
  34. Characters and factor representations of the infinite unitary group

    Dokl. Akad. Nauk SSSR, 267:2 (1982),  272–276
  35. Characters and factor representations of the infinite symmetric group

    Dokl. Akad. Nauk SSSR, 257:5 (1981),  1037–1040
  36. Asymptotic theory of characters of the symmetric group

    Funktsional. Anal. i Prilozhen., 15:4 (1981),  15–27
  37. Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux

    Dokl. Akad. Nauk SSSR, 233:6 (1977),  1024–1027
  38. Double algebras of functions on a finite group

    Zap. Nauchn. Sem. LOMI, 39 (1974),  182–185

  39. Anatolii Moiseevich Vershik (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 49:3(297) (1994),  195–204


© Steklov Math. Inst. of RAS, 2025