RUS  ENG
Full version
PEOPLE

Alimov Shavkat Arifdzhanovich

Publications in Math-Net.Ru

  1. On the solvability of the Cauchy problem in Gevrey classes for the Weyl fractional derivative equation

    Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025),  27–30
  2. Time optimal control problem with integral constraint for the heat transfer process

    Eurasian Math. J., 15:1 (2024),  8–22
  3. Makhmud Salakhitdinovich Salakhitdinov

    Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  463–468
  4. On the null-controllability of the heat exchange process

    Eurasian Math. J., 2:3 (2011),  5–19
  5. On a control problem associated with the heat transfer process

    Eurasian Math. J., 1:2 (2010),  17–30
  6. Dependence of the Convergence Domain of Spectral Expansions on the Geometry of the Set of Discontinuity of the Function Being Expanded

    Mat. Zametki, 79:2 (2006),  178–193
  7. On the localization of spectral expansions of distributions in a closed domain

    Differ. Uravn., 33:1 (1997),  80–82
  8. On the localization of spectral expansions of distributions

    Differ. Uravn., 32:6 (1996),  792–796
  9. On the absolute convergence of spectral expansions

    Dokl. Akad. Nauk, 342:4 (1995),  446–448
  10. Spectral expansions of distributions

    Dokl. Akad. Nauk, 331:6 (1993),  661–662
  11. On the number of negative eigenvalues of the Schrödinger operator

    Differ. Uravn., 29:10 (1993),  1818–1821
  12. Solution of contact problems in creep theory

    Differ. Uravn., 25:9 (1989),  1584–1588
  13. Multiple series and Fourier integrals

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 42 (1989),  7–104
  14. On smoothness of the solution of a degenerate problem with a directional derivative

    Differ. Uravn., 23:1 (1987),  10–22
  15. On the membership of the gradient of a harmonic function in S. M. Nikol'skij's class

    Trudy Mat. Inst. Steklov., 180 (1987),  25–27
  16. A spectral problem of Bitsadze–Samarskii

    Dokl. Akad. Nauk SSSR, 287:6 (1986),  1289–1290
  17. On the smoothness of the solution of a problem with oblique derivative

    Dokl. Akad. Nauk SSSR, 264:2 (1982),  265–266
  18. On a problem with an oblique derivative

    Differ. Uravn., 17:10 (1981),  1738–1751
  19. On a boundary value problem for an elliptic operator

    Dokl. Akad. Nauk SSSR, 253:2 (1980),  265–266
  20. On a boundary value problem

    Dokl. Akad. Nauk SSSR, 252:5 (1980),  1033–1034
  21. The expandability of continuous functions of Sobolev classes in eigenfunctions of the Laplace operator

    Sibirsk. Mat. Zh., 19:4 (1978),  721–734
  22. Problems of convergence of multiple trigonometric series and spectral decompositions. II

    Uspekhi Mat. Nauk, 32:1(193) (1977),  107–130
  23. On the Riesz means of functions in Lipschitz classes

    Dokl. Akad. Nauk SSSR, 231:1 (1976),  11–13
  24. On spectral decompositions of continuous functions in Sobolev classes

    Dokl. Akad. Nauk SSSR, 229:3 (1976),  529–530
  25. The work of A. N. Tikhonov on inverse problems for the Sturm–Liouville equation

    Uspekhi Mat. Nauk, 31:6(192) (1976),  84–88
  26. Convergence problems of multiple trigonometric series and spectral decompositions. I

    Uspekhi Mat. Nauk, 31:6(192) (1976),  28–83
  27. On spectral decompositions of functions in $H_p^\alpha$

    Mat. Sb. (N.S.), 101(143):1(9) (1976),  3–20
  28. On the uniform convergence of spectral decompositions of functions in $H_p^\alpha$

    Dokl. Akad. Nauk SSSR, 222:3 (1975),  521–522
  29. The localization of spectral expansions

    Differ. Uravn., 10:4 (1974),  744–746
  30. Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. V. A theorem on the uniform convergence of the spectral decomposition for a general second order elliptic operator

    Differ. Uravn., 10:3 (1974),  481–506
  31. Uniform convergence and summability of the spectral expansions of functions from $L_p^\alpha$

    Differ. Uravn., 9:4 (1973),  669–681
  32. The uniform convergence of spectral expansions of functions of the class $L_p^\alpha$

    Differ. Uravn., 9:3 (1973),  547–548
  33. Spectral expansions of functions of the class $L_p^\alpha$

    Differ. Uravn., 9:3 (1973),  477–486
  34. Fractional powers of elliptic operators and isomorphism of classes of differentiable functions

    Differ. Uravn., 8:9 (1972),  1609–1626
  35. The divergence in $L_p$ of the Riesz means of spectral expansions

    Differ. Uravn., 8:6 (1972),  1092–1094
  36. The divergence on a set of positive measure of the Riesz means of kernels of fractional order

    Differ. Uravn., 8:2 (1972),  372–373
  37. Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. II. Self-adjoint extension of the Laplace operator with an arbitrary spectrum

    Differ. Uravn., 7:5 (1971),  851–882
  38. Conditions for the convergence of spectral decompositions that correspond to self-adjoint extensions of elliptic operators. I. Self-adjoint extension of the Laplace operator with a point spectrum

    Differ. Uravn., 7:4 (1971),  670–710
  39. The localization of eigenfunction expansions of a selfadjoint elliptic operator

    Differ. Uravn., 7:3 (1971),  534–537
  40. The eigenfunction expansion for the Schrödinger operator

    Differ. Uravn., 7:2 (1971),  286–296
  41. Expandibility in eigenfunctions of the Laplacian in a two-dimension region

    Mat. Zametki, 9:6 (1971),  609–616
  42. The Fourier series expansion of functions from the class $B^\alpha_{p,\theta}$ in an arbitrary fundamental function system of Laplace's operator

    Dokl. Akad. Nauk SSSR, 194:1 (1970),  9–11
  43. Conditions for uniform Riesz summability, of Fourier series in an arbitrary fundamental function system of Laplace's operator, that are best possible in the classes of Solobev, Nikol'skii, Besov, Liouville and Zygmund–Hölder

    Dokl. Akad. Nauk SSSR, 193:2 (1970),  276–279
  44. Spectral decompositions corresponding to an arbitrary nonnegative selfadjoint extension of Laplace's operator

    Dokl. Akad. Nauk SSSR, 193:1 (1970),  9–12
  45. The summability of Fourier series for functions from $L_p$ in terms of eigenfunctions

    Differ. Uravn., 6:3 (1970),  538–547
  46. The $L_p$ summability of eigenfunction series

    Differ. Uravn., 6:1 (1970),  164–171
  47. The summation of eigenfunction series

    Dokl. Akad. Nauk SSSR, 182:5 (1968),  991–992

  48. Batirkhan Khudaibergenovich Turmetov (to the 60th anniversary)

    Chelyab. Fiz.-Mat. Zh., 6:1 (2021),  5–8
  49. Tukhtamurad Dzhuraevich Dzhuraev (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 49:5(299) (1994),  185–186
  50. Makhmud Salakhitdinovich Salakhitdinov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 48:6(294) (1993),  175–176
  51. Vladimir Aleksandrovich Il'in (on the occasion of his 60th birthday)

    Differ. Uravn., 24:5 (1988),  739–750
  52. Comment on conditions for the convergence of spectral expansions corresponding to self-adjoint extensions of elliptic operators

    Differ. Uravn., 8:1 (1972),  190


© Steklov Math. Inst. of RAS, 2025