RUS  ENG
Full version
PEOPLE

Razmyslov Yurii Pitirimovich

Publications in Math-Net.Ru

  1. The gravity first (on reincarnation of third Kepler's law)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 4,  15–27
  2. Frobenius differential-algebraic universums on complex algebraic curves

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 4,  3–9
  3. Nonaffine differential-algebraic curves do not exist

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 3,  3–8
  4. Rolling simplexes and their commensurability. IV. (A farewell to arms!)

    Fundam. Prikl. Mat., 21:2 (2016),  145–156
  5. Rolling simplexes and their commensurability. III (Capelli identities and their application to differential algebras)

    Fundam. Prikl. Mat., 19:6 (2014),  7–24
  6. The Heisenberg envelope for the Hochschild algebra of a finite-dimensional Lie algebra

    Fundam. Prikl. Mat., 17:5 (2012),  147–155
  7. An explanation to “Rolling simplexes and their commensurability” (field equations in accordance with Tycho Brahe)

    Fundam. Prikl. Mat., 17:4 (2012),  193–215
  8. Laws of rolling simplexes (feild equations according to Tycho Brahe)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 6,  38–42
  9. Paradigm of max-factor and finite-dimensional representation of Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 4,  48–50
  10. Rolling simplexes and their commensurability. (Axiom and criterion of incompressibility, momentum lemma)

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 5,  55–58
  11. Rolling simplexes and their commensurability (laws of mechanics as a problem of choice between metrics and measure)

    Fundam. Prikl. Mat., 16:3 (2010),  123–126
  12. The Hamilton nil-glamour of an affine algebraic plane

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1,  67–70
  13. $W$-Commensurability

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 5,  69–70
  14. Twenty five (unary version)

    Fundam. Prikl. Mat., 12:3 (2006),  225–238
  15. On a conjecture of Rydberg: $(e/c)/(h/e)=\pi/\textup{(unidentified expression)}$

    Fundam. Prikl. Mat., 6:3 (2000),  873–874
  16. Central polynomials for adjoint representations of simple Lie algebras exist

    Fundam. Prikl. Mat., 5:4 (1999),  1015–1025
  17. On the duality of varieties of representations of triple Lie systems and triple super-Lie systems. II

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 1,  29–37
  18. On the duality of varieties of representations of triple Lie systems and triple super-Lie systems. I

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1994, no. 6,  32–39
  19. On the nilpotency of obstructions for the representability of algebras satisfying Capelli identities and representations of finite type

    Uspekhi Mat. Nauk, 48:6(294) (1993),  171–172
  20. Classical operators of quantum mechanics in the modular case. I

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 1,  20–29
  21. Finitely generated simple Lie algebras that satisfy the standard Lie identity of degree $5$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 3,  37–41
  22. Inclusions of varieties that are generated by simple Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 2,  34–37
  23. Complexity of varieties of Lie algebras and their representations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 4,  75–78
  24. Simple Lie algebras in varieties generated by Lie algebras of cartan type

    Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1228–1264
  25. Polynomial c-dual sets and central polynomials in matrix superalgebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1,  49–52
  26. Simple Lie algebras satisfying the standard Lie identity of degree 5

    Izv. Akad. Nauk SSSR Ser. Mat., 49:3 (1985),  592–634
  27. Trace identities and central polynomials in the matrix superalgebras $M_{n,k}$

    Mat. Sb. (N.S.), 128(170):2(10) (1985),  194–215
  28. Skew-symmetric elements in the group algebra of a symmetric group

    Algebra Logika, 23:2 (1984),  123–135
  29. Central polynomials in irreducible representations of a semisimple Lie algebra

    Mat. Sb. (N.S.), 122(164):1(9) (1983),  97–125
  30. Varieties generated by irreducible representations of Lie algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 5,  4–7
  31. Varieties of representations of finite-dimensional algebras in prime algebras

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6,  31–37
  32. Algebras satisfying Capelli identities

    Izv. Akad. Nauk SSSR Ser. Mat., 45:1 (1981),  143–166
  33. On a problem of Hall and Higman

    Izv. Akad. Nauk SSSR Ser. Mat., 42:4 (1978),  833–847
  34. Existence of a finite base for certain varieties of algebras

    Algebra Logika, 13:6 (1974),  685–693
  35. The Jacobson Radical in PI-algebras

    Algebra Logika, 13:3 (1974),  337–360
  36. Trace identities of full matrix algebras over a field of characteristic zero

    Izv. Akad. Nauk SSSR Ser. Mat., 38:4 (1974),  723–756
  37. The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero

    Algebra Logika, 12:1 (1973),  83–113
  38. On a problem of Kaplanskii

    Izv. Akad. Nauk SSSR Ser. Mat., 37:3 (1973),  483–501
  39. A certain example of unsolvable almost Cross varieties of groups

    Algebra Logika, 11:2 (1972),  186–205
  40. Lie algebras satisfying Engel conditions

    Algebra Logika, 10:1 (1971),  33–44

  41. Victor Nikolaevich Latyshev (obituary)

    Uspekhi Mat. Nauk, 77:1(463) (2022),  177–182


© Steklov Math. Inst. of RAS, 2024