RUS  ENG
Full version
PEOPLE

Sveshnikov Konstantin Alekseevich

Publications in Math-Net.Ru

  1. Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system for $Z>Z_{\text{cr}}$: Vacuum polarization effects

    TMF, 199:1 (2019),  69–103
  2. Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density

    TMF, 198:3 (2019),  381–417
  3. Vacuum effects for a one-dimensional "hydrogen atom" with $Z>Z_{\mathrm{cr}}$

    TMF, 193:2 (2017),  276–308
  4. Quantum mechanics and the hydrogen atom in a generalized Wigner–Seitz cell

    TMF, 176:2 (2013),  254–280
  5. Schrödinger and Dirac particles in quasi-one-dimensional systems with a Coulomb interaction

    TMF, 173:2 (2012),  293–313
  6. Quasi-exact solution of the problem of relativistic bound states in the $(1{+}1)$-dimensional case

    TMF, 149:3 (2006),  427–456
  7. Subtraction-free renormalization of the quantum-field vacuum energy in the presence of nontrivial boundary conditions

    TMF, 143:1 (2005),  49–63
  8. Quasiexact Solution of a Relativistic Finite-Difference Analogue of the Schrödinger Equation for a Rectangular Potential Well

    TMF, 132:3 (2002),  408–433
  9. Vacuum Polarization Effects in a System of Two Three-Phase Chiral Bags

    TMF, 132:3 (2002),  363–387
  10. Chiral Bag Model with Constituent Quarks: Topological and Nontopological Solutions

    TMF, 132:2 (2002),  238–266
  11. Three-phase model of a chiral quark bag

    TMF, 117:2 (1998),  263–299
  12. Connection between discontinuous step-like and smooth kink-type classical solutions in quantum field theory

    TMF, 108:2 (1996),  212–248
  13. Nonclassical analogs of solitons in quantum field theory

    TMF, 94:1 (1993),  52–65
  14. Quantization of a particle-like classical solution in Bogoliubov variables without Dirac's brackets

    TMF, 93:3 (1992),  384–402
  15. Finite-difference effects in quantum field theory and quantization of classical solutions

    TMF, 82:1 (1990),  55–65
  16. Quantization of the gravitational field in the neighborhood of the Schwarzschild solution in the relativistic theory of gravitation

    TMF, 80:2 (1989),  173–191
  17. Some exact solutions for a scalar field in the relativistic theory of gravitation

    TMF, 76:3 (1988),  477–480
  18. Aspects of perturbation theory in the neighborhood of a classical particle-like solution

    TMF, 76:3 (1988),  350–361
  19. Classical solution of the equations of motion in the quantum theory of Fermi fields

    TMF, 76:1 (1988),  31–46
  20. Quantization in the neighborhood of a classical solution in the theory of a Fermi field

    TMF, 75:2 (1988),  218–225
  21. Quantium dynamics of an extended object in Bogolyubov's group variables

    TMF, 74:3 (1988),  373–391
  22. Quantization of a soliton solution in a (3+1)-dimensional model of a scalar field with self-interaction involving derivatives

    TMF, 72:3 (1987),  361–368
  23. A method of realizing the algebra of commutation relations

    TMF, 61:1 (1984),  45–51
  24. Covariant perturbation theory in the neighborhood of a classical solution

    TMF, 55:3 (1983),  361–384


© Steklov Math. Inst. of RAS, 2025