RUS  ENG
Full version
PEOPLE

Zhuk P Ph

Publications in Math-Net.Ru

  1. Regarding the transition operator of the steepest descent

    Matem. Mod., 26:8 (2014),  65–80
  2. Asymptotic behavior of solution to a nonlinear mathematical model of a cascade of serial sorption columns

    Zh. Vychisl. Mat. Mat. Fiz., 44:7 (2004),  1306–1313
  3. Asymptotic behavior of the solution to a linear mathematical model of a train of serially connected sorption columns

    Zh. Vychisl. Mat. Mat. Fiz., 42:3 (2002),  410–416
  4. Accurate estimates for the speed of convergence of $s$-step iterative methods of variational type in a Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 37:11 (1997),  1301–1310
  5. The asymptotic behaviour of the $s$-step method of steepest descent for minimizing a quadratic functional in Hilbert space

    Zh. Vychisl. Mat. Mat. Fiz., 35:2 (1995),  163–177
  6. Asymptotic behavior of the $s$-step method of steepest descent for eigenvalue problems in Hilbert space

    Mat. Sb., 184:12 (1993),  87–122
  7. The asymptotic behaviour of the three-step method of steepest descent

    Zh. Vychisl. Mat. Mat. Fiz., 32:3 (1992),  477–478
  8. Combined iterative methods of variational type

    Zh. Vychisl. Mat. Mat. Fiz., 28:9 (1988),  1283–1296
  9. Asymptotic rate of convergence of the method of steepest descent in eigenvalue problems

    Zh. Vychisl. Mat. Mat. Fiz., 24:4 (1984),  605–607
  10. On a conjecture of G. Forsythe

    Mat. Sb. (N.S.), 121(163):4(8) (1983),  435–453
  11. An efficient estimate of the convergence of the implicit iterative method in eigenvalue problems

    Differ. Uravn., 18:7 (1982),  1197–1202
  12. Asymptotic properties of the $s$-step optimal gradient method

    Zh. Vychisl. Mat. Mat. Fiz., 22:2 (1982),  269–279
  13. On the asymptotic properties of the method of steepest descent in eigenvalue problems

    Zh. Vychisl. Mat. Mat. Fiz., 21:2 (1981),  271–285


© Steklov Math. Inst. of RAS, 2024