RUS  ENG
Full version
PEOPLE

Plaksin V A

Publications in Math-Net.Ru

  1. К распределению квадратичных вычетов и невычетов

    Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1995, no. 2,  68–70
  2. On an upper bound for solutions of some diagonal equations in prime numbers

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 5,  51–55
  3. A statistical property of the sieve of Eratosthenes

    Teor. Veroyatnost. i Primenen., 36:3 (1991),  587–593
  4. Decomposition of Boolean functions and construction of asynchronous hazard-free circuits

    Avtomat. i Telemekh., 1990, no. 6,  126–134
  5. On a question of Hua Loo-Keng

    Mat. Zametki, 47:3 (1990),  78–90
  6. Distribution of $\mathscr{B}$-free numbers

    Mat. Zametki, 47:2 (1990),  69–77
  7. The distribution of numbers represented by the sum of two squares

    Dokl. Akad. Nauk SSSR, 299:6 (1988),  1320–1323
  8. The distribution of numbers representable as a sum of two squares

    Izv. Akad. Nauk SSSR Ser. Mat., 51:4 (1987),  860–877
  9. The sum of a quadratic form and a power of an integer

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 5,  13–16
  10. Numbers representable by the sum of two squares

    Dokl. Akad. Nauk SSSR, 286:6 (1986),  1305–1307
  11. The number of integers representable as a sum of two squares on small intervals

    Izv. Akad. Nauk SSSR Ser. Mat., 50:1 (1986),  67–78
  12. Pairs of integers which can be written as the sum of two squares

    Mat. Zametki, 40:2 (1986),  145–154
  13. Representation of a natural number by a pair of quadratic forms the arguments of one of which are primes

    Dokl. Akad. Nauk SSSR, 277:3 (1984),  546–548
  14. An asymptotic formula for the number of representations of a natural number by a pair of quadratic forms, the arguments of one of which are prime

    Izv. Akad. Nauk SSSR Ser. Mat., 48:6 (1984),  1245–1265
  15. Asymptotic formula for the number of solutions of a diophantine equation

    Mat. Zametki, 32:4 (1982),  443–457
  16. Representation of numbers as a sum of four squares of integers, two of which are prime

    Dokl. Akad. Nauk SSSR, 257:5 (1981),  1064–1066
  17. An asymptotic formula for the number of solutions of a nonlinear equation with prime numbers

    Izv. Akad. Nauk SSSR Ser. Mat., 45:2 (1981),  321–397
  18. Retarded diagnostic experiments with finite automata

    Avtomat. i Telemekh., 1980, no. 9,  165–172

  19. Letter to the editor: correction to the paper “ The distribution of numbers representable as a sum of two squares”

    Izv. RAN. Ser. Mat., 56:4 (1992),  908–909


© Steklov Math. Inst. of RAS, 2025