RUS  ENG
Full version
PEOPLE

Buchbinder Iosif L'vovich

Publications in Math-Net.Ru

  1. Generalization of the Bargmann–Wigner construction for infinite-spin fields

    TMF, 216:1 (2023),  76–105
  2. Hidden Supersymmetry as a Key to Constructing Low-Energy Superfield Effective Actions

    Trudy Mat. Inst. Steklova, 309 (2020),  66–88
  3. Massless Infinite Spin (Super)particles and Fields

    Trudy Mat. Inst. Steklova, 309 (2020),  54–65
  4. On gravitational interactions for massive higher spins in $\mathrm{AdS_3}$

    J. Phys. A, 46:21 (2013), 214015, 21 pp.
  5. Cubic interaction vertex of higher-spin fields with external electromagnetic field

    Nuclear Phys. B, 864:3 (2012),  694–721
  6. Gauge invariant Lagrangian formulation of massive higher spin fields in $(A)dS_3$ space

    Phys. Lett. B, 716:1 (2012),  243–248
  7. One-loop effective action in the $\mathcal N=2$ supersymmetric massive Yang–Mills field theory

    TMF, 157:1 (2008),  22–40
  8. The holomorphic effective action in $N$=2 $D$=4 supergauge theories with various gauge groups

    TMF, 122:3 (2000),  444–455
  9. Anomaly structure at canonical quantization of the bosonic string in background fields

    TMF, 108:2 (1996),  294–305
  10. Canonical analysis and quantization of three dimensional topologically massive gravity

    TMF, 100:3 (1994),  444–457
  11. Canonical quantization of $D$-dimensional $R^2$ gravity

    TMF, 87:1 (1991),  141–153
  12. Effective action and superconformal anomalies of $(p, p)$ $\sigma$ models in $(1, 1)$ superspace

    TMF, 82:1 (1990),  75–82
  13. On the coordinate representation in the quantum theory of gauge fields

    TMF, 81:2 (1989),  193–202
  14. Vilkovisky–DeWitt effective action in multidimensional quantum gravity and antiperiodic boundary conditions

    TMF, 80:1 (1989),  150–159
  15. Behavior of the effective charges in “finite” theories in curved space-time

    TMF, 79:2 (1989),  314–320
  16. Single-loop counterterm for 4-dimensional Sigma model with higher derivatives

    TMF, 77:1 (1988),  42–50
  17. Canonical quantization of theories with higher derivatives. Quantization of $R^2$ gravitation

    TMF, 72:2 (1987),  204–218
  18. Renormalization group equations and effective action in curved space-time

    TMF, 72:1 (1987),  58–67
  19. Renormalization-group equations in curved space-time

    TMF, 61:3 (1984),  393–399
  20. Coherent states of an electron in a quantized electromagnetic wave

    TMF, 33:3 (1977),  419–426
  21. Kinetic equations for a solid paramagnet in an alternating longitudinal field

    TMF, 29:2 (1976),  283–287
  22. Statistical derivation of a kinetic equation for a subsystem in a “viscous medium”

    TMF, 23:1 (1975),  121–131


© Steklov Math. Inst. of RAS, 2024