|
|
Publications in Math-Net.Ru
-
Interpolation of Nonlinear Maps
Mat. Zametki, 96:6 (2014), 896–904
-
Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
TMF, 123:2 (2000), 285–293
-
Dynamical and Topological Methods in Theory of Geodesically Equivalent Metrics
Zap. Nauchn. Sem. POMI, 266 (2000), 155–168
-
Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals
Mat. Zametki, 66:3 (1999), 417–430
-
On Integrals of the Third Degree in Momenta
Regul. Chaotic Dyn., 4:3 (1999), 35–44
-
Geodesical equivalence and the Liouville integration of the geodesic flows
Regul. Chaotic Dyn., 3:2 (1998), 30–45
-
A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 53–55
-
Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1, 60–62
-
The Poincare Map in the Regular Neighbourhoods of the Liouville Critical Leaves of an Integrable Hamiltonian System
Regul. Chaotic Dyn., 2:2 (1997), 79–86
-
Jacobi Vector Fields of Integrable Geodesic Flows
Regul. Chaotic Dyn., 2:1 (1997), 103–116
-
Tensor invariants of natural mechanical systems on compact surfaces, and the corresponding integrals
Mat. Sb., 188:2 (1997), 137–157
-
Critical points of the rotation function of an integrable Hamiltonian system
Uspekhi Mat. Nauk, 51:4(310) (1996), 147–148
-
Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion
Mat. Sb., 187:3 (1996), 143–160
-
The action variable and the Poincaré Hamiltonian in a neighbourhood of the critical circle
Uspekhi Mat. Nauk, 50:1(301) (1995), 213–214
-
The inclusion of the Klein bottles in the theory of the topological classification of Hamiltonian systems
Uspekhi Mat. Nauk, 49:1(295) (1994), 227–228
-
Homological properties of labels of the Fomenko–Zieschang invariant
Trudy Mat. Inst. Steklov., 205 (1994), 164–171
© , 2025