RUS  ENG
Full version
PEOPLE

Topalov Petar Jordanov

Publications in Math-Net.Ru

  1. Interpolation of Nonlinear Maps

    Mat. Zametki, 96:6 (2014),  896–904
  2. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows

    TMF, 123:2 (2000),  285–293
  3. Dynamical and Topological Methods in Theory of Geodesically Equivalent Metrics

    Zap. Nauchn. Sem. POMI, 266 (2000),  155–168
  4. Tensor invariants of natural mechanical systems on compact surfaces and the corresponding integrals

    Mat. Zametki, 66:3 (1999),  417–430
  5. On Integrals of the Third Degree in Momenta

    Regul. Chaotic Dyn., 4:3 (1999),  35–44
  6. Geodesical equivalence and the Liouville integration of the geodesic flows

    Regul. Chaotic Dyn., 3:2 (1998),  30–45
  7. A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5,  53–55
  8. Conjugate points of hyperbolic geodesics of square integrable geodesic flows on closed surfaces

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 1,  60–62
  9. The Poincare Map in the Regular Neighbourhoods of the Liouville Critical Leaves of an Integrable Hamiltonian System

    Regul. Chaotic Dyn., 2:2 (1997),  79–86
  10. Jacobi Vector Fields of Integrable Geodesic Flows

    Regul. Chaotic Dyn., 2:1 (1997),  103–116
  11. Tensor invariants of natural mechanical systems on compact surfaces, and the corresponding integrals

    Mat. Sb., 188:2 (1997),  137–157
  12. Critical points of the rotation function of an integrable Hamiltonian system

    Uspekhi Mat. Nauk, 51:4(310) (1996),  147–148
  13. Computation of the fine Fomenko–Zieschang invariant for the main integrable cases of rigid body motion

    Mat. Sb., 187:3 (1996),  143–160
  14. The action variable and the Poincaré Hamiltonian in a neighbourhood of the critical circle

    Uspekhi Mat. Nauk, 50:1(301) (1995),  213–214
  15. The inclusion of the Klein bottles in the theory of the topological classification of Hamiltonian systems

    Uspekhi Mat. Nauk, 49:1(295) (1994),  227–228
  16. Homological properties of labels of the Fomenko–Zieschang invariant

    Trudy Mat. Inst. Steklov., 205 (1994),  164–171


© Steklov Math. Inst. of RAS, 2025