RUS  ENG
Full version
PEOPLE

Smirnov Yuriy Fedorovich

Publications in Math-Net.Ru

  1. $q$-Analog of Gelfand–Graev Basis for the Noncompact Quantum Algebra $U_q(u(n,1))$

    SIGMA, 6 (2010), 010, 13 pp.
  2. Electron momentum spectroscopy of atoms, molecules, and thin films

    UFN, 169:10 (1999),  1111–1139
  3. True many-particle scattering in the oscillator representation

    TMF, 117:2 (1998),  227–248
  4. On additional degeneracy of terms for semi-integral spin ions in cubic fields

    Dokl. Akad. Nauk SSSR, 317:1 (1991),  98–102
  5. On the decomposition of direct products of irreducible representations of the $C^4_{6v}$ group (lattices of the wurtzite- and $\mathrm{ZnO}$ type)

    Dokl. Akad. Nauk SSSR, 268:5 (1983),  1125–1128
  6. Description of a class of projection operators for semisimple complex Lie algebras

    Mat. Zametki, 26:1 (1979),  15–25
  7. Group of canonical transformations and the method of $K$ harmonics

    TMF, 30:3 (1977),  370–381
  8. Projection operators for simple lie groups

    TMF, 15:1 (1973),  107–119
  9. The construction of the wave functions of quantum systems with the symmetry of $G_2$

    Dokl. Akad. Nauk SSSR, 206:6 (1972),  1317–1320
  10. Projection operators for simple lie groups

    TMF, 8:2 (1971),  255–271
  11. On the relationship between the translationally invariant shell model and the $K$-harmonics method

    TMF, 7:1 (1971),  45–55
  12. Decomposition of the direct products of irreducible representations of space groups

    Dokl. Akad. Nauk SSSR, 184:1 (1969),  82–84
  13. Projection operators for classical groups

    Uspekhi Mat. Nauk, 24:3(147) (1969),  227–228
  14. Quasispin formalism in the strong crystal field theory

    Dokl. Akad. Nauk SSSR, 180:4 (1968),  843–846
  15. The algebra of irreducible cubic tensors

    Dokl. Akad. Nauk SSSR, 163:5 (1965),  1138–1141

  16. Применение аппарата унитарных групп в расчетах электронных состояний

    UFN, 124:2 (1978),  362–364


© Steklov Math. Inst. of RAS, 2025