RUS  ENG
Full version
PEOPLE

Korobkov Mikhail Vyacheslavovich

Publications in Math-Net.Ru

  1. The Morse–Sard theorem and Luzin $N$-property: a new synthesis for smooth and Sobolev mappings

    Sibirsk. Mat. Zh., 60:5 (2019),  1171–1185
  2. Rigidity conditions for the boundaries of submanifolds in a Riemannian manifold

    J. Sib. Fed. Univ. Math. Phys., 9:3 (2016),  320–331
  3. The flux problem for the Navier–Stokes equations

    Uspekhi Mat. Nauk, 69:6(420) (2014),  115–176
  4. A criterion for the unique determination of domains in Euclidean spaces by the metrics of their boundaries induced by the intrinsic metrics of the domains

    Mat. Tr., 12:2 (2009),  52–96
  5. Properties of $C^1$-smooth mappings with one-dimensional gradient range

    Sibirsk. Mat. Zh., 50:5 (2009),  1105–1122
  6. Necessary and sufficient conditions for unique determination of plane domains

    Sibirsk. Mat. Zh., 49:3 (2008),  548–567
  7. An example of a $C^1$-smooth function whose gradient range is an arc with no tangent at any point

    Sibirsk. Mat. Zh., 49:1 (2008),  134–144
  8. Properties of the $C^1$-smooth functions with nowhere dense gradient range

    Sibirsk. Mat. Zh., 48:6 (2007),  1272–1284
  9. Necessary and sufficient conditions for a curve to be the gradient range of a $C^1$-smooth function

    Sibirsk. Mat. Zh., 48:4 (2007),  789–810
  10. Isentropic solutions of quasilinear equations of the first order

    Mat. Sb., 197:5 (2006),  99–124
  11. An analog of Sard's theorem for $C^1$-smooth functions of two variables

    Sibirsk. Mat. Zh., 47:5 (2006),  1083–1091
  12. Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs

    Sibirsk. Mat. Zh., 44:1 (2003),  120–131
  13. Stability in the $C$-norm and $W^1_\infty$ of classes of Lipschitz functions of one variable

    Sibirsk. Mat. Zh., 43:5 (2002),  1026–1045
  14. Stability of classes of affine mappings

    Sibirsk. Mat. Zh., 42:6 (2001),  1259–1277
  15. A generalization of the Lagrange mean value theorem to the case of vector-valued mappings

    Sibirsk. Mat. Zh., 42:2 (2001),  349–353
  16. Stability of classes of Lipschitz mappings, the Darboux theorem, and quasiconvex sets

    Sibirsk. Mat. Zh., 41:5 (2000),  1046–1059
  17. On stability of classes of lipschitz mappings generated by compact sets of the space of linear mappings

    Sibirsk. Mat. Zh., 41:4 (2000),  792–810
  18. On a generalization of the Darboux theorem to the multidimensional case

    Sibirsk. Mat. Zh., 41:1 (2000),  118–133


© Steklov Math. Inst. of RAS, 2024