RUS  ENG
Full version
PEOPLE

Semenov-Tian-Shansky Michael Arsen'evich

Publications in Math-Net.Ru

  1. Scientific heritage of L. D. Faddeev. Survey of papers

    Uspekhi Mat. Nauk, 72:6(438) (2017),  3–112
  2. Lax operators, Poisson groups, and the differential Galois theory

    TMF, 181:1 (2014),  173–199
  3. Poisson–Lie groups. The quantum duality principle and the twisted quantum double

    TMF, 93:2 (1992),  302–329
  4. Monodromy mapping and classical $r$-matrices

    Zap. Nauchn. Sem. POMI, 200 (1992),  156–166
  5. Lax representation with a spectral parameter for the kowalevski top and its generalizations

    Funktsional. Anal. i Prilozhen., 22:2 (1988),  87–88
  6. Integrable systems. II

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 16 (1987),  86–226
  7. Compatible Poisson brackets for Lax equations and classical $r$-matrices

    Zap. Nauchn. Sem. LOMI, 164 (1987),  176–188
  8. Poisson groups and Dressing transformations

    Zap. Nauchn. Sem. LOMI, 150 (1986),  119–142
  9. Lie algebras and Lax equations with spectral parameter on an elliptic curve

    Zap. Nauchn. Sem. LOMI, 150 (1986),  104–118
  10. Quantum anomalies and cocycles on gauge groups

    Funktsional. Anal. i Prilozhen., 18:4 (1984),  64–72
  11. Classical $r$-matrices and quantization

    Zap. Nauchn. Sem. LOMI, 133 (1984),  228–235
  12. Hamiltonian structure of the Kadomzev–Petviashvily type equations

    Zap. Nauchn. Sem. LOMI, 133 (1984),  212–227
  13. What is a classical $r$-matrix?

    Funktsional. Anal. i Prilozhen., 17:4 (1983),  17–33
  14. Integrable systems and Lie superalgebras

    Zap. Nauchn. Sem. LOMI, 123 (1983),  92–97
  15. Classical $r$-matrices and the orbits method

    Zap. Nauchn. Sem. LOMI, 123 (1983),  77–91
  16. Variational principle for the Lorentz gauge condition and nonperturbative bounds on the functional integration domain in nonabelian gauge theories

    Zap. Nauchn. Sem. LOMI, 120 (1982),  159–165
  17. Current algebras and nonlinear partial differential equations

    Dokl. Akad. Nauk SSSR, 251:6 (1980),  1310–1314
  18. A family of Hamiltonian structures, hierarchy of Hamiltonians, and reduction for first-order matrix differential operators

    Funktsional. Anal. i Prilozhen., 14:2 (1980),  77–78
  19. Graded Lie algebras and completely integrable dynamical systems

    Dokl. Akad. Nauk SSSR, 247:4 (1979),  802–805
  20. Gauge conditions for the Yang–Mills field

    TMF, 38:1 (1979),  3–14
  21. Harmonic analysis on Riemannian symmetric spaces of negative curvature and scattering theory

    Izv. Akad. Nauk SSSR Ser. Mat., 40:3 (1976),  562–592
  22. Harmonic analysis on symmetric Riemannian spaces of negative curvature and scattering theory

    Dokl. Akad. Nauk SSSR, 219:6 (1974),  1330–1333
  23. A certain property of the Kirillov integral

    Zap. Nauchn. Sem. LOMI, 37 (1973),  53–65

  24. Ludwig Dmitrievich Faddeev (obituary)

    Uspekhi Mat. Nauk, 72:6(438) (2017),  191–196
  25. Ludvig Dmitrievich Faddeev (on his 80th birthday)

    Uspekhi Mat. Nauk, 69:6(420) (2014),  183–191


© Steklov Math. Inst. of RAS, 2025