RUS  ENG
Full version
PEOPLE

Kitaeva Ol'ga Gennad'evna

Publications in Math-Net.Ru

  1. Stabilization of solutions to a linear Sobolev-type equation with a relatively sectorial operator

    J. Comp. Eng. Math., 12:1 (2025),  3–10
  2. Stabilization of solutions for the Wentzell stochastic dynamical system in a circle and on its boundary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 17:3 (2025),  5–12
  3. Stabilization of solutions of the stochastic Dzekzer equation

    J. Comp. Eng. Math., 11:2 (2024),  3–10
  4. Invariant spaces of stochastic systems of Oskolkov equations

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 16:3 (2024),  27–31
  5. Stability of solutions to the stochastic Oskolkov equation and stabilization

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:1 (2024),  17–26
  6. Stabilization of the stochastic Barenblatt – Zheltov – Kochina equation

    J. Comp. Eng. Math., 10:1 (2023),  21–29
  7. Exponential dichotomies of stochastic Sobolev type equations

    J. Comp. Eng. Math., 9:3 (2022),  3–19
  8. Invariant manifolds of semilinear Sobolev type equations

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  101–111
  9. Exponential dichotomies of a stochastic non-classical equation on a two-dimensional sphere

    J. Comp. Eng. Math., 8:1 (2021),  60–67
  10. Invariant spaces of Oskolkov stochastic linear equations on the manifold

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:2 (2021),  5–10
  11. Invariant manifolds of the Hoff model in “noise” spaces

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:4 (2021),  24–35
  12. Dichotomies of solutions to the stochastic Ginzburg – Landau equation on a torus

    J. Comp. Eng. Math., 7:4 (2020),  17–25
  13. Stable and unstable invariant spaces of one stochastic non-classical equation with a relatively radial operator on a 3-torus

    J. Comp. Eng. Math., 7:2 (2020),  40–49
  14. Exponential dichotomies of a non-classical equation in spaces of differential forms on a two-dimensional torus with "noises"

    J. Comp. Eng. Math., 6:3 (2019),  26–38
  15. Exponential dichotomies in Barenblatt– Zheltov–Kochina model in spaces of differential forms with “noise”

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:2 (2019),  47–57
  16. Invariant manifolds of the Hoff equation

    Mat. Zametki, 79:3 (2006),  444–449

  17. Alexander Leonidovich Shestakov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022),  142–146
  18. Ãåîðãèé Àíàòîëüåâè÷ Ñâèðèäþê (ê þáèëåþ)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  123–127
  19. To the 65th anniversary of professor G. A. Sviridyuk

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017),  155–158


© Steklov Math. Inst. of RAS, 2025