|
|
Publications in Math-Net.Ru
-
On reconstruction of Kolmogorov operators with discontinuous coefficients
Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024), 5–8
-
On dependence of solutions to Fokker–Planck–Kolmogorov equations on their coefficients and initial data
Mat. Zametki, 116:3 (2024), 421–431
-
Khas'minskii's Theorem for the Kolmogorov Equation
with Partially Singular Diffusion Matrix
Mat. Zametki, 115:3 (2024), 466–480
-
Noninear Fokker–Planck–Kolmogorov equations
Uspekhi Mat. Nauk, 79:5(479) (2024), 3–60
-
Kolmogorov equations for degenerate Ornstein–Uhlenbeck operators
Sibirsk. Mat. Zh., 65:1 (2024), 27–37
-
The Fokker–Planck–Kolmogorov equation with nonlinear terms of local and types
Algebra i Analiz, 35:5 (2023), 11–38
-
Fokker–Planck–Kolmogorov equations with a parameter
Dokl. RAN. Math. Inf. Proc. Upr., 513 (2023), 21–26
-
Kolmogorov problems on equations for stationary and transition probabilities of diffusion processes
Teor. Veroyatnost. i Primenen., 68:3 (2023), 420–455
-
Applications of Zvonkin's transform to stationary Kolmogorov equations
Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 20–24
-
The superposition principle for Fokker–Planck–Kolmogorov equations with unbounded coefficients
Funktsional. Anal. i Prilozhen., 56:4 (2022), 59–79
-
Uniqueness of a probability solution to the Kolmogorov equation with a diffusion matrix satisfying Dini’s condition
Dokl. RAN. Math. Inf. Proc. Upr., 501 (2021), 11–15
-
On nonuniqueness of probability solutions to the Cauchy problem for the Fokker–Planck–Kolmogorov equation
Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 16–20
-
On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation
Mat. Sb., 212:6 (2021), 3–42
-
The Kolmogorov problem on uniqueness of probability solutions of a parabolic equation
Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 22–25
-
Estimates of distances between solutions of Fokker–Planck–Kolmogorov equations with partially degenerate diffusion matrices
Theory Stoch. Process., 23(39):2 (2018), 41–54
-
On the Singularity of Functions and the Quantization of Probability Measures
Mat. Zametki, 102:4 (2017), 628–631
-
Distances between stationary distributions of diffusions and solvability of nonlinear Fokker–Planck–Kolmogorov equations
Teor. Veroyatnost. i Primenen., 62:1 (2017), 16–43
-
The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations
Mat. Zametki, 96:5 (2014), 855–863
-
Nonlinear parabolic equations for measures
Algebra i Analiz, 25:1 (2013), 64–93
-
The Fokker–Planck–Kolmogorov equations with a potential and a non-uniformly elliptic diffusion matrix
Tr. Mosk. Mat. Obs., 74:1 (2013), 17–34
-
Regular and qualitative properties of solutions for parabolic equations for measures
Teor. Veroyatnost. i Primenen., 56:2 (2011), 318–350
-
On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation
Teor. Veroyatnost. i Primenen., 56:1 (2011), 77–99
-
Lower estimates for densities of solutions to parabolic equations for measures
Dokl. Akad. Nauk, 429:5 (2009), 600–604
-
Lower estimates of densities of solutions of elliptic equations for measures
Dokl. Akad. Nauk, 426:2 (2009), 156–161
-
On Interior Estimates of the Sobolev Norms of Solutions of Elliptic Equations
Mat. Zametki, 83:2 (2008), 316–320
-
Positive Densities of Transition Probabilities of Diffusion Processes
Teor. Veroyatnost. i Primenen., 53:2 (2008), 213–239
-
Estimates of densities of stationary distributions and transition probabilities of diffusion processes
Teor. Veroyatnost. i Primenen., 52:2 (2007), 240–270
-
On Morrey's estimate of the Sobolev norms of solutions of elliptic equations
Mat. Zametki, 79:3 (2006), 450–469
-
Global regularity and estimates for solutions of parabolic equations
Teor. Veroyatnost. i Primenen., 50:4 (2005), 652–674
-
Vladimir Igorevich Bogachev (on his 60th birthday)
Uspekhi Mat. Nauk, 76:6(462) (2021), 201–208
© , 2024