RUS  ENG
Full version
PEOPLE

Evtushenko Yurii Gavrilovich

Publications in Math-Net.Ru

  1. $P$-factor interpolation of solutions of an equation with a degenerate function

    Dokl. RAN. Math. Inf. Proc. Upr., 520:1 (2024),  5–10
  2. On the redundancy of Hessian nonsingularity for linear convergence rate of the Newton method applied to the minimization of convex functions

    Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024),  637–643
  3. Exact formula for solving a degenerate system of quadratic equations

    Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  387–391
  4. The method of fictitious extrema localization in the problem of global optimization

    Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  78–80
  5. $p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  920–936
  6. On the equivalence of singular and ill-posed problems: The $p$-factor regularization method

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  41–44
  7. Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022),  1632–1638
  8. On one approach to the numerical solution of a coefficient inverse problem

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  58–62
  9. A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  8–12
  10. Some properties of smooth convex functions and Newton’s method

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  12–17
  11. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  19–34
  12. Choice of finite-difference schemes in solving coefficient inverse problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1643–1655
  13. A new view of some fundamental results in optimization

    Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020),  1462–1471
  14. Locally polynomial method for solving systems of linear inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020),  216–220
  15. Application of the fast automatic differentiation technique for solving inverse coefficient problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020),  18–28
  16. Newton-type method for solving systems of linear equations and inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019),  2086–2101
  17. An approach to determining the variation of a functional with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1277–1295
  18. A new proof of the Kuhn–Tucker and Farkas theorems

    Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018),  1084–1088
  19. Projective-dual method for solving systems of linear equations with nonnegative variables

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  169–180
  20. Finding sets of solutions to systems of nonlinear inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1248–1254
  21. A new class of theorems of the alternative

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  44–49
  22. Application of optimization methods for finding equilibrium states of two-dimensional crystals

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2032–2041
  23. Generalized fast automatic differentiation technique

    Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1847–1862
  24. On an inverse linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  13–19
  25. Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy

    Avtomat. i Telemekh., 2014, no. 6,  49–68
  26. Regularization and normal solutions of systems of linear equations and inequalities

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  113–121
  27. Generalized Newton method for linear optimization problems with inequality constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  98–108
  28. $p$th-order approximation of the solution set of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  1951–1969
  29. Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  209–224
  30. An application of the nonuniform covering method to global optimization of mixed integer nonlinear problems

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1376–1389
  31. Parallel implementation of Newton's method for solving large-scale linear programs

    Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1369–1384
  32. Parallel global optimization of functions of several variables

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  255–269
  33. Finding the projection of a given point on the set of solutions of a linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  33–47
  34. Parallelization of the global extremum searching process

    Avtomat. i Telemekh., 2007, no. 5,  46–58
  35. New numerical methods and some applied aspects of the $p$-regularity theory

    Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  1987–2000
  36. Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1302–1321
  37. On families of hyperplanes that separate polyhedra

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  238–253
  38. Application of Newton's method for solving large linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1564–1573
  39. Theorems on alternatives and their applications to numerical methods

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  354–375
  40. Two parametric families of LP problems and their applications

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  31–44
  41. Application of theorems on the alternative to the determination of normal solutions of linear systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  21–31
  42. Search for normal solutions in linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1766–1786
  43. Equilibriums in differential games and problems of acceptance of offers

    Zh. Vychisl. Mat. Mat. Fiz., 39:6 (1999),  897–905
  44. A modified Lagrange function for the linear programming problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  45–48
  45. Numerical optimization of solutions to Burgers problem by means of boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1449–1458
  46. Dual barrier-projection and barrier-Newton methods for linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  30–45
  47. The use of Newton's method for linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995),  850–866
  48. Barrier-projective methods for nonlinear programming

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  669–684
  49. Exact auxiliary functions in optimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  43–57
  50. Fast automatic differentiation on computers

    Mat. Model., 1:1 (1989),  120–131
  51. Methods for the numerical solution of multicriteria problems

    Dokl. Akad. Nauk SSSR, 291:1 (1986),  25–29
  52. Sufficient conditions for a minimum for nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 278:1 (1984),  24–27
  53. A library of programs for solving optimal control problems

    Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979),  367–387
  54. On a class of methods for solving nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 239:3 (1978),  519–522
  55. Application of the singular perturbation method for solving minimax problems

    Dokl. Akad. Nauk SSSR, 233:3 (1977),  277–280
  56. A relaxation method for solving problems of non-linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  890–904
  57. Numerical methods for the solution of nonlinear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976),  307–324
  58. Numerical methods in nonlinear programming

    Dokl. Akad. Nauk SSSR, 221:5 (1975),  1016–1019
  59. An application of the method of Ljapunov functions to the study of the convergence of numerical methods

    Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975),  101–112
  60. Two numerical methods of solving nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  38–40
  61. Iterative methods for the solution of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974),  1138–1149
  62. Some local properties of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  669–679
  63. Numerical methods of solving some operational research problems

    Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973),  583–598
  64. A numerical method for finding the best guaranteed estimates

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  89–104
  65. A numerical method of search for the global extremum of functions (scan on a nonuniform net)

    Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971),  1390–1403
  66. A numerical method of solution of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  375–384
  67. Asymptotic estimate of the influence of relative motion of a satellite on the motion of its centre of mass

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  262–273

  68. Ïàìÿòè Âëàäèìèðà Ìèõàéëîâè÷à Êðèâöîâà (1948–2019)

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1998–2002
  69. In memory of Aleksandr Sergeevich Kholodov

    Mat. Model., 30:1 (2018),  135–136
  70. In memory of Ivan Ivanovich Eryomin (22.01.1933–21.07.2013)

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  887–891
  71. Aleksandr Andreevich Shestakov (A tribute in honor of his ninetieth birthday)

    Differ. Uravn., 46:1 (2010),  9–15
  72. In memory of professor Yurii Dmitrievich Shmyglevskii (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  928–936
  73. Letter to the editor: Concerning some publications on internal point methods

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  161–162
  74. Books review

    Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1743


© Steklov Math. Inst. of RAS, 2025