|
|
Publications in Math-Net.Ru
-
On the redundancy of Hessian nonsingularity for linear convergence rate of the Newton method applied to the minimization of convex functions
Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024), 637–643
-
Exact formula for solving a degenerate system of quadratic equations
Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024), 387–391
-
The method of fictitious extrema localization in the problem of global optimization
Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 78–80
-
$p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions
Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 920–936
-
On the equivalence of singular and ill-posed problems: The $p$-factor regularization method
Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 41–44
-
Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022), 1632–1638
-
On one approach to the numerical solution of a coefficient inverse problem
Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 58–62
-
A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory
Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 8–12
-
Some properties of smooth convex functions and Newton’s method
Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 12–17
-
Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement
Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 19–34
-
Choice of finite-difference schemes in solving coefficient inverse problems
Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020), 1643–1655
-
A new view of some fundamental results in optimization
Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020), 1462–1471
-
Locally polynomial method for solving systems of linear inequalities
Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 216–220
-
Application of the fast automatic differentiation technique for solving inverse coefficient problems
Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020), 18–28
-
Newton-type method for solving systems of linear equations and inequalities
Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019), 2086–2101
-
An approach to determining the variation of a functional with singularities
Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019), 1277–1295
-
A new proof of the Kuhn–Tucker and Farkas theorems
Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1084–1088
-
Projective-dual method for solving systems of linear equations with nonnegative variables
Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018), 169–180
-
Finding sets of solutions to systems of nonlinear inequalities
Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017), 1248–1254
-
A new class of theorems of the alternative
Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 44–49
-
Application of optimization methods for finding equilibrium states of two-dimensional crystals
Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016), 2032–2041
-
Generalized fast automatic differentiation technique
Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016), 1847–1862
-
On an inverse linear programming problem
Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 13–19
-
Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy
Avtomat. i Telemekh., 2014, no. 6, 49–68
-
Regularization and normal solutions of systems of linear equations and inequalities
Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014), 113–121
-
Generalized Newton method for linear optimization problems with inequality constraints
Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 98–108
-
$p$th-order approximation of the solution set of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 1951–1969
-
Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy
Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 209–224
-
An application of the nonuniform covering method to global optimization of mixed integer nonlinear problems
Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011), 1376–1389
-
Parallel implementation of Newton's method for solving large-scale linear programs
Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009), 1369–1384
-
Parallel global optimization of functions of several variables
Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009), 255–269
-
Finding the projection of a given point on the set of solutions of a linear programming problem
Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 33–47
-
Parallelization of the global extremum searching process
Avtomat. i Telemekh., 2007, no. 5, 46–58
-
New numerical methods and some applied aspects of the $p$-regularity theory
Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 1987–2000
-
Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects
Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006), 1302–1321
-
On families of hyperplanes that separate polyhedra
Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005), 238–253
-
Application of Newton's method for solving large linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004), 1564–1573
-
Theorems on alternatives and their applications to numerical methods
Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003), 354–375
-
Two parametric families of LP problems and their applications
Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002), 31–44
-
Application of theorems on the alternative to the determination of normal solutions of linear systems
Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12, 21–31
-
Search for normal solutions in linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000), 1766–1786
-
Equilibriums in differential games and problems of acceptance of offers
Zh. Vychisl. Mat. Mat. Fiz., 39:6 (1999), 897–905
-
A modified Lagrange function for the linear programming problems
Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12, 45–48
-
Numerical optimization of solutions to Burgers problem by means of boundary conditions
Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997), 1449–1458
-
Dual barrier-projection and barrier-Newton methods for linear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996), 30–45
-
The use of Newton's method for linear programming
Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995), 850–866
-
Barrier-projective methods for nonlinear programming
Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994), 669–684
-
Exact auxiliary functions in optimization problems
Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990), 43–57
-
Fast automatic differentiation on computers
Matem. Mod., 1:1 (1989), 120–131
-
Methods for the numerical solution of multicriteria problems
Dokl. Akad. Nauk SSSR, 291:1 (1986), 25–29
-
Sufficient conditions for a minimum for nonlinear programming problems
Dokl. Akad. Nauk SSSR, 278:1 (1984), 24–27
-
A library of programs for solving optimal control problems
Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979), 367–387
-
On a class of methods for solving nonlinear programming problems
Dokl. Akad. Nauk SSSR, 239:3 (1978), 519–522
-
Application of the singular perturbation method for solving minimax problems
Dokl. Akad. Nauk SSSR, 233:3 (1977), 277–280
-
A relaxation method for solving problems of non-linear programming
Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977), 890–904
-
Numerical methods for the solution of nonlinear programming problems
Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976), 307–324
-
Numerical methods in nonlinear programming
Dokl. Akad. Nauk SSSR, 221:5 (1975), 1016–1019
-
An application of the method of Ljapunov functions to the study of the convergence of numerical methods
Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 101–112
-
Two numerical methods of solving nonlinear programming problems
Dokl. Akad. Nauk SSSR, 215:1 (1974), 38–40
-
Iterative methods for the solution of minimax problems
Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974), 1138–1149
-
Some local properties of minimax problems
Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974), 669–679
-
Numerical methods of solving some operational research problems
Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973), 583–598
-
A numerical method for finding the best guaranteed estimates
Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972), 89–104
-
A numerical method of search for the global extremum of functions (scan on a nonuniform net)
Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971), 1390–1403
-
A numerical method of solution of minimax problems
Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971), 375–384
-
Asymptotic estimate of the influence of relative motion of a satellite on the motion of its centre of mass
Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965), 262–273
-
Памяти Владимира Михайловича Кривцова (1948–2019)
Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019), 1998–2002
-
In memory of Aleksandr Sergeevich Kholodov
Matem. Mod., 30:1 (2018), 135–136
-
In memory of Ivan Ivanovich Eryomin (22.01.1933–21.07.2013)
Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 887–891
-
Aleksandr Andreevich Shestakov (A tribute in honor of his ninetieth birthday)
Differ. Uravn., 46:1 (2010), 9–15
-
In memory of professor Yurii Dmitrievich Shmyglevskii (1926–2007)
Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008), 928–936
-
Letter to the editor: Concerning some publications on internal point methods
Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996), 161–162
-
Books review
Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994), 1743
© , 2025