RUS  ENG
Full version
PEOPLE

Evtushenko Yurii Gavrilovich

Publications in Math-Net.Ru

  1. On the redundancy of Hessian nonsingularity for linear convergence rate of the Newton method applied to the minimization of convex functions

    Zh. Vychisl. Mat. Mat. Fiz., 64:4 (2024),  637–643
  2. Exact formula for solving a degenerate system of quadratic equations

    Zh. Vychisl. Mat. Mat. Fiz., 64:3 (2024),  387–391
  3. The method of fictitious extrema localization in the problem of global optimization

    Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023),  78–80
  4. $p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023),  920–936
  5. On the equivalence of singular and ill-posed problems: The $p$-factor regularization method

    Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022),  41–44
  6. Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022),  1632–1638
  7. On one approach to the numerical solution of a coefficient inverse problem

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  58–62
  8. A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory

    Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021),  8–12
  9. Some properties of smooth convex functions and Newton’s method

    Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021),  12–17
  10. Application of Second-Order Optimization Methods for Solving an Inverse Coefficient Problem in the Three-Dimensional Statement

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021),  19–34
  11. Choice of finite-difference schemes in solving coefficient inverse problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:10 (2020),  1643–1655
  12. A new view of some fundamental results in optimization

    Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020),  1462–1471
  13. Locally polynomial method for solving systems of linear inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020),  216–220
  14. Application of the fast automatic differentiation technique for solving inverse coefficient problems

    Zh. Vychisl. Mat. Mat. Fiz., 60:1 (2020),  18–28
  15. Newton-type method for solving systems of linear equations and inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 59:12 (2019),  2086–2101
  16. An approach to determining the variation of a functional with singularities

    Zh. Vychisl. Mat. Mat. Fiz., 59:8 (2019),  1277–1295
  17. A new proof of the Kuhn–Tucker and Farkas theorems

    Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018),  1084–1088
  18. Projective-dual method for solving systems of linear equations with nonnegative variables

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  169–180
  19. Finding sets of solutions to systems of nonlinear inequalities

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1248–1254
  20. A new class of theorems of the alternative

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  44–49
  21. Application of optimization methods for finding equilibrium states of two-dimensional crystals

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2032–2041
  22. Generalized fast automatic differentiation technique

    Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1847–1862
  23. On an inverse linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  13–19
  24. Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy

    Avtomat. i Telemekh., 2014, no. 6,  49–68
  25. Regularization and normal solutions of systems of linear equations and inequalities

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  113–121
  26. Generalized Newton method for linear optimization problems with inequality constraints

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  98–108
  27. $p$th-order approximation of the solution set of nonlinear equations

    Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  1951–1969
  28. Nonuniform covering method as applied to multicriteria optimization problems with guaranteed accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  209–224
  29. An application of the nonuniform covering method to global optimization of mixed integer nonlinear problems

    Zh. Vychisl. Mat. Mat. Fiz., 51:8 (2011),  1376–1389
  30. Parallel implementation of Newton's method for solving large-scale linear programs

    Zh. Vychisl. Mat. Mat. Fiz., 49:8 (2009),  1369–1384
  31. Parallel global optimization of functions of several variables

    Zh. Vychisl. Mat. Mat. Fiz., 49:2 (2009),  255–269
  32. Finding the projection of a given point on the set of solutions of a linear programming problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  33–47
  33. Parallelization of the global extremum searching process

    Avtomat. i Telemekh., 2007, no. 5,  46–58
  34. New numerical methods and some applied aspects of the $p$-regularity theory

    Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  1987–2000
  35. Calculation of deformations in nanocomposites using the block multipole method with the analytical-numerical account of the scale effects

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1302–1321
  36. On families of hyperplanes that separate polyhedra

    Zh. Vychisl. Mat. Mat. Fiz., 45:2 (2005),  238–253
  37. Application of Newton's method for solving large linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1564–1573
  38. Theorems on alternatives and their applications to numerical methods

    Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  354–375
  39. Two parametric families of LP problems and their applications

    Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002),  31–44
  40. Application of theorems on the alternative to the determination of normal solutions of linear systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 12,  21–31
  41. Search for normal solutions in linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1766–1786
  42. Equilibriums in differential games and problems of acceptance of offers

    Zh. Vychisl. Mat. Mat. Fiz., 39:6 (1999),  897–905
  43. A modified Lagrange function for the linear programming problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1997, no. 12,  45–48
  44. Numerical optimization of solutions to Burgers problem by means of boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 37:12 (1997),  1449–1458
  45. Dual barrier-projection and barrier-Newton methods for linear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996),  30–45
  46. The use of Newton's method for linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 35:6 (1995),  850–866
  47. Barrier-projective methods for nonlinear programming

    Zh. Vychisl. Mat. Mat. Fiz., 34:5 (1994),  669–684
  48. Exact auxiliary functions in optimization problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  43–57
  49. Fast automatic differentiation on computers

    Matem. Mod., 1:1 (1989),  120–131
  50. Methods for the numerical solution of multicriteria problems

    Dokl. Akad. Nauk SSSR, 291:1 (1986),  25–29
  51. Sufficient conditions for a minimum for nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 278:1 (1984),  24–27
  52. A library of programs for solving optimal control problems

    Zh. Vychisl. Mat. Mat. Fiz., 19:2 (1979),  367–387
  53. On a class of methods for solving nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 239:3 (1978),  519–522
  54. Application of the singular perturbation method for solving minimax problems

    Dokl. Akad. Nauk SSSR, 233:3 (1977),  277–280
  55. A relaxation method for solving problems of non-linear programming

    Zh. Vychisl. Mat. Mat. Fiz., 17:4 (1977),  890–904
  56. Numerical methods for the solution of nonlinear programming problems

    Zh. Vychisl. Mat. Mat. Fiz., 16:2 (1976),  307–324
  57. Numerical methods in nonlinear programming

    Dokl. Akad. Nauk SSSR, 221:5 (1975),  1016–1019
  58. An application of the method of Ljapunov functions to the study of the convergence of numerical methods

    Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975),  101–112
  59. Two numerical methods of solving nonlinear programming problems

    Dokl. Akad. Nauk SSSR, 215:1 (1974),  38–40
  60. Iterative methods for the solution of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974),  1138–1149
  61. Some local properties of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  669–679
  62. Numerical methods of solving some operational research problems

    Zh. Vychisl. Mat. Mat. Fiz., 13:3 (1973),  583–598
  63. A numerical method for finding the best guaranteed estimates

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  89–104
  64. A numerical method of search for the global extremum of functions (scan on a nonuniform net)

    Zh. Vychisl. Mat. Mat. Fiz., 11:6 (1971),  1390–1403
  65. A numerical method of solution of minimax problems

    Zh. Vychisl. Mat. Mat. Fiz., 11:2 (1971),  375–384
  66. Asymptotic estimate of the influence of relative motion of a satellite on the motion of its centre of mass

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  262–273

  67. Памяти Владимира Михайловича Кривцова (1948–2019)

    Zh. Vychisl. Mat. Mat. Fiz., 59:11 (2019),  1998–2002
  68. In memory of Aleksandr Sergeevich Kholodov

    Matem. Mod., 30:1 (2018),  135–136
  69. In memory of Ivan Ivanovich Eryomin (22.01.1933–21.07.2013)

    Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014),  887–891
  70. Aleksandr Andreevich Shestakov (A tribute in honor of his ninetieth birthday)

    Differ. Uravn., 46:1 (2010),  9–15
  71. In memory of professor Yurii Dmitrievich Shmyglevskii (1926–2007)

    Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  928–936
  72. Letter to the editor: Concerning some publications on internal point methods

    Zh. Vychisl. Mat. Mat. Fiz., 36:12 (1996),  161–162
  73. Books review

    Zh. Vychisl. Mat. Mat. Fiz., 34:11 (1994),  1743


© Steklov Math. Inst. of RAS, 2025