RUS  ENG
Full version
PEOPLE

Troshkin O V

Publications in Math-Net.Ru

  1. Vortex phantoms in the stationary Kochin–Yudovich flow problem

    Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021),  684–688
  2. Bifurcation model of the laminar-turbulent transition near a flat wall

    Matem. Mod., 31:1 (2019),  114–126
  3. On smooth vortex catastrophe of uniqueness for stationary flows of an ideal fluid

    Zh. Vychisl. Mat. Mat. Fiz., 59:10 (2019),  1803–1814
  4. Stability theory for a two-dimensional channel

    Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1331–1346
  5. Numerical simulation of the high-speed impact of two metal plates

    Matem. Mod., 28:2 (2016),  19–30
  6. On the stability of reverse flow vortices

    Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016),  2092–2097
  7. On the short-wave nature of Richtmyer–Meshkov instability

    Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  1093–1103
  8. On the development of a wake vortex in inviscid flow

    Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014),  164–169
  9. Nonlinear stability of a parabolic velocity profile in a plane periodic channel

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1903–1922
  10. Structurization of chaos

    Zh. Vychisl. Mat. Mat. Fiz., 51:2 (2011),  237–250
  11. On the theory of countercurrent flow in a rotating viscous heat-conducting gas

    Zh. Vychisl. Mat. Mat. Fiz., 51:2 (2011),  222–236
  12. On the rotational heating of a gas

    Zh. Vychisl. Mat. Mat. Fiz., 50:6 (2010),  1159–1168
  13. Numerical stability analysis of the Taylor–Couette flow in the two-dimensional case

    Zh. Vychisl. Mat. Mat. Fiz., 49:4 (2009),  754–768
  14. On the theory of periodic layers in incompressible fluid

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  738–744
  15. Perturbation waves in turbulent media

    Zh. Vychisl. Mat. Mat. Fiz., 33:12 (1993),  1844–1863
  16. Turbulence as a nonequilibrium phase transition

    TMF, 92:2 (1992),  293–311
  17. A separating vortex in a flow of a viscous liquid

    Zh. Vychisl. Mat. Mat. Fiz., 32:2 (1992),  329–331
  18. Propagation of small perturbations in an ideal turbulent medium

    Dokl. Akad. Nauk SSSR, 307:5 (1989),  1072–1076
  19. A two-dimensional flow problem for steady-state Euler equations

    Mat. Sb., 180:3 (1989),  354–374
  20. The algebraic structure of two-dimensional stationary Navier–Stokes equations, and nonlocal uniqueness theorems

    Dokl. Akad. Nauk SSSR, 298:6 (1988),  1372–1376
  21. Topological analysis of the structure of hydrodynamic flows

    Uspekhi Mat. Nauk, 43:4(262) (1988),  129–158
  22. A bifurcation model of turbulent flow in a channel

    Dokl. Akad. Nauk SSSR, 290:2 (1986),  313–317
  23. Admissibility of the set of boundary values in a steady-state hydrodynamic problem

    Dokl. Akad. Nauk SSSR, 272:5 (1983),  1086–1090
  24. Some properties of Euler fields

    Differ. Uravn., 18:1 (1982),  138–144

  25. In memory of O. M. Belotserkovskii

    Matem. Mod., 28:2 (2016),  3–5
  26. In memory of Academician of the RAS Oleg Mikhailovich Belotserkovskii

    Zh. Vychisl. Mat. Mat. Fiz., 56:6 (2016),  921–926


© Steklov Math. Inst. of RAS, 2024