RUS  ENG
Full version
PEOPLE

Turaev Vladimir Georgievich

Publications in Math-Net.Ru

  1. Complexity of virtual 3-manifolds

    Mat. Sb., 207:11 (2016),  4–24
  2. Three-dimensional manifolds with poor spines

    Trudy Mat. Inst. Steklova, 288 (2015),  38–48
  3. A semigroup of theta-curves in 3-manifolds

    Mosc. Math. J., 11:4 (2011),  805–814
  4. Elementary ideals of links and manifolds: symmetry and asymmetry

    Algebra i Analiz, 1:5 (1989),  223–232
  5. Category of oriented tangles and its representations

    Funktsional. Anal. i Prilozhen., 23:3 (1989),  93–94
  6. Operator invariants of tangles, and $R$-matrices

    Izv. Akad. Nauk SSSR Ser. Mat., 53:5 (1989),  1073–1107
  7. Euler structures, nonsingular vector fields, and torsions of Reidemeister type

    Izv. Akad. Nauk SSSR Ser. Mat., 53:3 (1989),  607–643
  8. Three-dimensional Poincaré complexes: homotopy classification and splitting

    Mat. Sb., 180:6 (1989),  809–830
  9. Homeomorphisms of geometric three-dimensional manifolds

    Mat. Zametki, 43:4 (1988),  533–542
  10. A link with a non-symmetric second elementary ideal

    Zap. Nauchn. Sem. LOMI, 167 (1988),  93–94
  11. Jones-type invariants of tangles

    Zap. Nauchn. Sem. LOMI, 167 (1988),  90–92
  12. The Conway and Kauffman modules of the solid torus

    Zap. Nauchn. Sem. LOMI, 167 (1988),  79–89
  13. Reidemeister torsion in knot theory

    Uspekhi Mat. Nauk, 41:1(247) (1986),  97–147
  14. Classification of oriented Montesinos links by invariants of spin structures

    Zap. Nauchn. Sem. LOMI, 143 (1985),  130–146
  15. First symplectic Chern class and Maslov indices

    Zap. Nauchn. Sem. LOMI, 143 (1985),  110–129
  16. A cocycle for the symplectic first chern class and the maslov index

    Funktsional. Anal. i Prilozhen., 18:1 (1984),  43–48
  17. Intersection of loops in two-dimensional manifolds. II. Free loops

    Mat. Sb. (N.S.), 121(163):3(7) (1983),  359–369
  18. Cohomology rings, linking forms and invariants of spin structures in three-dimensional manifolds

    Mat. Sb. (N.S.), 120(162):1 (1983),  68–83
  19. Fundamental groups of three-dimensional manifolds and Poincaré duality

    Trudy Mat. Inst. Steklov., 154 (1983),  231–238
  20. A canonical cocycle for the Euler class of a flat vector bundle

    Dokl. Akad. Nauk SSSR, 265:3 (1982),  521–524
  21. Nielsen numbers and fixed points of self-mappings of wedges of circles

    Zap. Nauchn. Sem. LOMI, 122 (1982),  135–136
  22. $3$-dimensional homology spheres and links with Alexander polynomial 1.

    Zap. Nauchn. Sem. LOMI, 122 (1982),  128–134
  23. Three-dimensional Poincaré complexes: classification and splitting

    Dokl. Akad. Nauk SSSR, 257:3 (1981),  551–552
  24. Multiplace generalizations of the Seifert form of a classical knot

    Mat. Sb. (N.S.), 116(158):3(11) (1981),  370–397
  25. The fundamental groups of manifolds and Poincaré complexes

    Mat. Sb. (N.S.), 110(152):2(10) (1979),  278–296
  26. Intersections of loops in two-dimensional manifolds

    Mat. Sb. (N.S.), 106(148):4(8) (1978),  566–588
  27. Reidemeister torsion and the Alexander polynomial

    Mat. Sb. (N.S.), 101(143):2(10) (1976),  252–270
  28. Reidemeister torsion and group invariants of three-dimensional manifolds

    Zap. Nauchn. Sem. LOMI, 66 (1976),  204–206
  29. Milnor invariants and Massey products

    Zap. Nauchn. Sem. LOMI, 66 (1976),  189–203
  30. The Alexander polynomial of a three-dimensional manifold

    Mat. Sb. (N.S.), 97(139):3(7) (1975),  341–359

  31. Sergei Vladimirovich Matveev (on his 70th birthday)

    Uspekhi Mat. Nauk, 73:4(442) (2018),  179–187


© Steklov Math. Inst. of RAS, 2025