RUS  ENG
Full version
PEOPLE

Mysovskikh Ivan Petrovich

Publications in Math-Net.Ru

  1. Cubature formulas that are exact for trigonometric polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 38:7 (1998),  1114–1117
  2. A representation of the reproducing kernel of a sphere

    Zh. Vychisl. Mat. Mat. Fiz., 36:3 (1996),  28–34
  3. Reproducing kernels of a sphere and its surface

    Zh. Vychisl. Mat. Mat. Fiz., 33:6 (1993),  952–958
  4. Cubature formulas that are exact for trigonometric polynomials

    Dokl. Akad. Nauk SSSR, 296:1 (1987),  28–31
  5. Quadrature formulae of the highest trigonometric degree of accuracy

    Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1246–1252
  6. Calculation of integrals over the surface of the sphere

    Dokl. Akad. Nauk SSSR, 235:2 (1977),  269–272
  7. Čakalov's theorem

    Zh. Vychisl. Mat. Mat. Fiz., 15:6 (1975),  1589–1593
  8. An application of orthogonal polynomials to the construction of cubature formulas

    Zh. Vychisl. Mat. Mat. Fiz., 12:2 (1972),  467–475
  9. The answer to a question of Radon

    Dokl. Akad. Nauk SSSR, 198:3 (1971),  537–539
  10. On the article “Cubature formulae and orthogonal polynomials”

    Zh. Vychisl. Mat. Mat. Fiz., 10:2 (1970),  444–447
  11. Estimate of the remainder of a cubature formula for a hypersphere

    Mat. Zametki, 6:5 (1969),  627–632
  12. Radon's cubature formula for a region with central symmetry

    Zh. Vychisl. Mat. Mat. Fiz., 9:3 (1969),  687–691
  13. Cubature formulae and orthogonal polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  419–425
  14. On the construction of cubature formulas with the smallest number of nodes

    Dokl. Akad. Nauk SSSR, 178:6 (1968),  1252–1254
  15. Radon's paper on the cubature formula

    Zh. Vychisl. Mat. Mat. Fiz., 7:4 (1967),  889–891
  16. Construction of cubature formulas and orthogonal polynomials

    Zh. Vychisl. Mat. Mat. Fiz., 7:1 (1967),  185–189
  17. Proof of the minimality of the number of nodes in the cubature formula for a hypersphere

    Zh. Vychisl. Mat. Mat. Fiz., 6:4 (1966),  621–630
  18. Cubature formulae for evaluating integrals on the surface of a sphere

    Sibirsk. Mat. Zh., 5:3 (1964),  721–723
  19. On the construction of cubature formulae for very simple domains

    Zh. Vychisl. Mat. Mat. Fiz., 4:1 (1964),  3–14
  20. An error bound for the numerical solution of a nonlinear integral equation

    Dokl. Akad. Nauk SSSR, 153:1 (1963),  30–33
  21. Cubature formulas for evaluating integrals over a sphere

    Dokl. Akad. Nauk SSSR, 147:3 (1962),  552–555
  22. An error estimate for the numerical solution of a linear integral equation

    Dokl. Akad. Nauk SSSR, 140:4 (1961),  763–765
  23. On an estimate of the error in eigenvalues calculated by replacing the kernel by another close to it

    Mat. Sb. (N.S.), 49(91):3 (1959),  331–340
  24. Estimate of the error of approximate methods of investigation of eigenvalues of a Hermite kernel

    Mat. Sb. (N.S.), 48(90):2 (1959),  137–148
  25. Representation of the resolvent of the sum of two kernels

    Mat. Sb. (N.S.), 46(88):1 (1958),  77–90
  26. Computation of the eigenvalues of integral equations by means of iterated kernels

    Dokl. Akad. Nauk SSSR, 115:1 (1957),  45–48
  27. Proof of the existence of an eigenvalue for a symmetric kernel

    Uspekhi Mat. Nauk, 11:2(68) (1956),  199–200
  28. On the convergence of Newton's method

    Trudy Mat. Inst. Steklov., 28 (1949),  145–147

  29. Georgii Georgievich Rasputin (obituary)

    Zh. Vychisl. Mat. Mat. Fiz., 32:6 (1992),  991
  30. Sergei Mikhailovich Lozinskii (obituary)

    Uspekhi Mat. Nauk, 41:5(251) (1986),  153–154
  31. Sergei Mikhailovich Lozinskii (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 30:2(182) (1975),  229–234
  32. Elements of numerical analysis: Singer, J., New York–London, 1964. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 5:2 (1965),  389
  33. Sergei Mikhailovich Lozinskii (on his fiftieth birthday)

    Uspekhi Mat. Nauk, 19:6(120) (1964),  207–212
  34. Letter to the Editor

    Mat. Sb. (N.S.), 47(89):1 (1959),  143


© Steklov Math. Inst. of RAS, 2024