RUS  ENG
Full version
PEOPLE

Novikov Roman Gennadievich

Publications in Math-Net.Ru

  1. A Holographic Uniqueness Theorem

    Trudy Mat. Inst. Steklova, 325 (2024),  232–237
  2. Spectral inequality for Schrödinger's equation with multipoint potential

    Uspekhi Mat. Nauk, 77:6(468) (2022),  69–76
  3. Transmission eigenvalues for multipoint scatterers

    Eurasian Journal of Mathematical and Computer Applications, 9:4 (2021),  17–25
  4. Multipoint formulae for inverse scattering at high energies

    Uspekhi Mat. Nauk, 76:4(460) (2021),  177–178
  5. Error estimates for phase recovering from phaseless scattering data

    Eurasian Journal of Mathematical and Computer Applications, 8:1 (2020),  44–61
  6. Creation and annihilation of point-potentials using Moutard-type transform in spectral variable

    J. Math. Phys., 61 (2020), 93501, 7 pp.
  7. Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials

    Uspekhi Mat. Nauk, 74:3(447) (2019),  3–16
  8. Inverse scattering for the Bethe–Peierls model

    Eurasian Journal of Mathematical and Computer Applications, 6:1 (2018),  52–55
  9. Distortions in IR spectra related to registration conditions: II. The influence of scattering

    Optics and Spectroscopy, 124:5 (2018),  623–627
  10. Darboux–Moutard transformations and Poincaré–Steklov operators

    Trudy Mat. Inst. Steklova, 302 (2018),  334–342
  11. Multipoint scatterers with bound states at zero energy

    TMF, 193:2 (2017),  309–314
  12. An analog of Chang inversion formula for weighted Radon transforms in multidimensions

    Eurasian Journal of Mathematical and Computer Applications, 4:2 (2016),  23–32
  13. Generalized Analytic Functions, Moutard-Type Transforms, and Holomorphic Maps

    Funktsional. Anal. i Prilozhen., 50:2 (2016),  81–84
  14. Moutard type transformation for matrix generalized analytic functions and gauge transformations

    Uspekhi Mat. Nauk, 71:5(431) (2016),  179–180
  15. Phaseless inverse scattering in the one dimensional case

    Eurasian Journal of Mathematical and Computer Applications, 3:1 (2015),  64–70
  16. An iterative approach to non-overdetermined inverse scattering at fixed energy

    Mat. Sb., 206:1 (2015),  131–146
  17. Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue

    Funktsional. Anal. i Prilozhen., 48:4 (2014),  74–77
  18. Weighted Radon transforms and first order differential systems on the plane

    Mosc. Math. J., 14:4 (2014),  807–823
  19. Stability estimates for recovering the potential by the impedance boundary map

    Algebra i Analiz, 25:1 (2013),  37–63
  20. Faddeev eigenfunctions for moltipoint potentials

    Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013),  76–91
  21. Reconstruction of a potential from the impedance boundary map

    Eurasian Journal of Mathematical and Computer Applications, 1:1 (2013),  5–28
  22. The Moutard transformation and two-dimensional multipoint delta-type potentials

    Uspekhi Mat. Nauk, 68:5(413) (2013),  181–182
  23. Weighted Radon transforms for which Chang's approximate inversion formula is exact

    Uspekhi Mat. Nauk, 66:2(398) (2011),  237–238
  24. The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices

    Uspekhi Mat. Nauk, 62:4(376) (2007),  155–156
  25. Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2

    Trudy Mat. Inst. Steklova, 225 (1999),  301–318
  26. Yang–Mills fields, the Radon–Penrose transform and the Cauchy–Riemann equations

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 54 (1989),  113–196
  27. Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$

    Funktsional. Anal. i Prilozhen., 22:4 (1988),  11–22
  28. Solution of a multidimensional inverse scattering problem on the basis of generalized dispersion relations

    Dokl. Akad. Nauk SSSR, 292:4 (1987),  814–818
  29. The $\bar\partial$-equation in the multidimensional inverse scattering problem

    Uspekhi Mat. Nauk, 42:3(255) (1987),  93–152
  30. Analogues of multisoliton potentials for the two-dimensional Schrödinger operator, and a nonlocal Riemann problem

    Dokl. Akad. Nauk SSSR, 286:1 (1986),  19–22
  31. Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude for fixed energy

    Funktsional. Anal. i Prilozhen., 20:3 (1986),  90–91
  32. Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy

    TMF, 66:2 (1986),  234–240
  33. Analogs of multisoliton potentials for the two-dimensional Schrödinger operator

    Funktsional. Anal. i Prilozhen., 19:4 (1985),  32–42
  34. Oscillating weakly localized solutions of the Korteweg–de Vries equation

    TMF, 61:2 (1984),  199–213

  35. Iskander Asanovich Taimanov (on his 60th birthday)

    Uspekhi Mat. Nauk, 77:6(468) (2022),  209–218
  36. Boris Rufimovich Vainberg (on his 80th birthday)

    Uspekhi Mat. Nauk, 74:1(445) (2019),  189–194
  37. Gennadi Markovich Henkin (obituary)

    Uspekhi Mat. Nauk, 72:3(435) (2017),  170–190


© Steklov Math. Inst. of RAS, 2024