|
|
Publications in Math-Net.Ru
-
A Holographic Uniqueness Theorem
Trudy Mat. Inst. Steklova, 325 (2024), 232–237
-
Spectral inequality for Schrödinger's equation with multipoint potential
Uspekhi Mat. Nauk, 77:6(468) (2022), 69–76
-
Transmission eigenvalues for multipoint scatterers
Eurasian Journal of Mathematical and Computer Applications, 9:4 (2021), 17–25
-
Multipoint formulae for inverse scattering at high energies
Uspekhi Mat. Nauk, 76:4(460) (2021), 177–178
-
Error estimates for phase recovering from phaseless scattering data
Eurasian Journal of Mathematical and Computer Applications, 8:1 (2020), 44–61
-
Creation and annihilation of point-potentials using Moutard-type transform in spectral variable
J. Math. Phys., 61 (2020), 93501, 7 pp.
-
Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials
Uspekhi Mat. Nauk, 74:3(447) (2019), 3–16
-
Inverse scattering for the Bethe–Peierls model
Eurasian Journal of Mathematical and Computer Applications, 6:1 (2018), 52–55
-
Distortions in IR spectra related to registration conditions: II. The influence of scattering
Optics and Spectroscopy, 124:5 (2018), 623–627
-
Darboux–Moutard transformations and Poincaré–Steklov operators
Trudy Mat. Inst. Steklova, 302 (2018), 334–342
-
Multipoint scatterers with bound states at zero energy
TMF, 193:2 (2017), 309–314
-
An analog of Chang inversion formula for weighted Radon transforms in multidimensions
Eurasian Journal of Mathematical and Computer Applications, 4:2 (2016), 23–32
-
Generalized Analytic Functions, Moutard-Type Transforms, and Holomorphic Maps
Funktsional. Anal. i Prilozhen., 50:2 (2016), 81–84
-
Moutard type transformation for matrix generalized analytic functions and gauge transformations
Uspekhi Mat. Nauk, 71:5(431) (2016), 179–180
-
Phaseless inverse scattering in the one dimensional case
Eurasian Journal of Mathematical and Computer Applications, 3:1 (2015), 64–70
-
An iterative approach to non-overdetermined inverse scattering at fixed energy
Mat. Sb., 206:1 (2015), 131–146
-
Two-Dimensional von Neumann–Wigner Potentials with a Multiple Positive Eigenvalue
Funktsional. Anal. i Prilozhen., 48:4 (2014), 74–77
-
Weighted Radon transforms and first order differential systems on the plane
Mosc. Math. J., 14:4 (2014), 807–823
-
Stability estimates for recovering the potential by the impedance boundary map
Algebra i Analiz, 25:1 (2013), 37–63
-
Faddeev eigenfunctions for moltipoint potentials
Eurasian Journal of Mathematical and Computer Applications, 1:2 (2013), 76–91
-
Reconstruction of a potential from the impedance boundary map
Eurasian Journal of Mathematical and Computer Applications, 1:1 (2013), 5–28
-
The Moutard transformation and two-dimensional multipoint delta-type potentials
Uspekhi Mat. Nauk, 68:5(413) (2013), 181–182
-
Weighted Radon transforms for which Chang's approximate inversion formula is exact
Uspekhi Mat. Nauk, 66:2(398) (2011), 237–238
-
The Cauchy kernel for the Novikov–Dynnikov DN-discrete complex analysis in triangular lattices
Uspekhi Mat. Nauk, 62:4(376) (2007), 155–156
-
Approximate Inverse Quantum Scattering at Fixed Energy in Dimension 2
Trudy Mat. Inst. Steklova, 225 (1999), 301–318
-
Yang–Mills fields, the Radon–Penrose transform and the Cauchy–Riemann equations
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 54 (1989), 113–196
-
Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$
Funktsional. Anal. i Prilozhen., 22:4 (1988), 11–22
-
Solution of a multidimensional inverse scattering problem on the
basis of generalized dispersion relations
Dokl. Akad. Nauk SSSR, 292:4 (1987), 814–818
-
The $\bar\partial$-equation in the multidimensional inverse scattering problem
Uspekhi Mat. Nauk, 42:3(255) (1987), 93–152
-
Analogues of multisoliton potentials for the two-dimensional Schrödinger operator, and a nonlocal Riemann problem
Dokl. Akad. Nauk SSSR, 286:1 (1986), 19–22
-
Reconstruction of a two-dimensional Schrödinger operator from the scattering amplitude for fixed energy
Funktsional. Anal. i Prilozhen., 20:3 (1986), 90–91
-
Construction of two-dimensional Schrödinger operator with given scattering amplitude at fixed energy
TMF, 66:2 (1986), 234–240
-
Analogs of multisoliton potentials for the two-dimensional Schrödinger operator
Funktsional. Anal. i Prilozhen., 19:4 (1985), 32–42
-
Oscillating weakly localized solutions of the Korteweg–de Vries equation
TMF, 61:2 (1984), 199–213
-
Iskander Asanovich Taimanov (on his 60th birthday)
Uspekhi Mat. Nauk, 77:6(468) (2022), 209–218
-
Boris Rufimovich Vainberg (on his 80th birthday)
Uspekhi Mat. Nauk, 74:1(445) (2019), 189–194
-
Gennadi Markovich Henkin (obituary)
Uspekhi Mat. Nauk, 72:3(435) (2017), 170–190
© , 2024