RUS  ENG
Full version
PEOPLE

Dragilev Mikhail Mikhailovich

Publications in Math-Net.Ru

  1. Fréchet Spaces with Unconditional Base

    Mat. Zametki, 80:1 (2006),  29–32
  2. On Köthe spaces with pre-equivalent unconditional basis

    Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 10,  29–35
  3. On the Abel and Fabry properties of basic expansions of analytic functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 8,  20–27
  4. On common bases of the spaces $A(G)$ and $\overline A(\overline G)$

    Sibirsk. Mat. Zh., 40:1 (1999),  69–74
  5. On subspaces of nuclear spaces

    Sibirsk. Mat. Zh., 37:3 (1996),  568–577
  6. Köthe spaces with multiple regular bases

    Mat. Zametki, 39:5 (1986),  727–735
  7. Twofold absolute bases

    Mat. Zametki, 38:1 (1985),  120–131
  8. Compatibly regular bases in nonnuclear Köthe spaces

    Mat. Zametki, 30:6 (1981),  819–822
  9. Topological vector spaces with equivalent bases

    Mat. Zametki, 28:6 (1980),  947–951
  10. Compatibly regular bases of Köthe spaces

    Mat. Zametki, 19:1 (1976),  115–122
  11. A dual relationship between some questions of basis theory and interpolation theory

    Dokl. Akad. Nauk SSSR, 215:3 (1974),  522–525
  12. On binary relationships on the class of nuclear Köthe spaces

    Funktsional. Anal. i Prilozhen., 7:1 (1973),  70–71
  13. Extendable bases of certain Köthe spaces

    Sibirsk. Mat. Zh., 14:4 (1973),  878–882
  14. Multiple regular bases in a Köthe space

    Dokl. Akad. Nauk SSSR, 193:4 (1970),  752–755
  15. A class of nuclear spaces

    Mat. Zametki, 8:2 (1970),  169–179
  16. Köthe spaces that are distinguishable by diametral dimension

    Sibirsk. Mat. Zh., 11:3 (1970),  512–525
  17. On special dimensions defined on some classes of Köthe spaces

    Mat. Sb. (N.S.), 80(122):2(10) (1969),  225–240
  18. On regular bases in nuclear spaces

    Mat. Sb. (N.S.), 68(110):2 (1965),  153–173
  19. On a class of functions analytic in multi-circular domains

    Uspekhi Mat. Nauk, 19:1(115) (1964),  151–154
  20. On local convergence of basis series

    Uspekhi Mat. Nauk, 18:4(112) (1963),  143–145
  21. On the convergence of certain interpolation series

    Sibirsk. Mat. Zh., 4:2 (1963),  287–294
  22. On the existence of a common basis for imbedded spaces of analytic functions

    Dokl. Akad. Nauk SSSR, 145:2 (1962),  263–265
  23. The order of the best approximation by linear combinations of elements of an extended basis to functions defined on a continuum

    Dokl. Akad. Nauk SSSR, 139:3 (1961),  528–530
  24. Continuable bases of analytic functions

    Mat. Sb. (N.S.), 53(95):2 (1961),  207–218
  25. On the convergence of the Abel–Goncharov interpolation series

    Uspekhi Mat. Nauk, 15:3(93) (1960),  151–155
  26. Standard form of basis for the space of analytic functions

    Uspekhi Mat. Nauk, 15:2(92) (1960),  181–188
  27. On the stability of basis $\{z^n\}$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1958, no. 3,  67–73

  28. Vladimir Petrovich Kondakov (on the occasion of his sixtieth birthday)

    Vladikavkaz. Mat. Zh., 6:2 (2004),  58–60


© Steklov Math. Inst. of RAS, 2025