|
|
Publications in Math-Net.Ru
-
Obstacle problem for a discontinuous Stieltjes string
Bulletin of Irkutsk State University. Series Mathematics, 53 (2025), 35–50
-
Qualitative properties of the obstacle problem solution for the Stieltjes string
Mat. Zametki, 118:2 (2025), 320–324
-
Adaptation of the finite element method for the Stieltjes string deformation problem with a nonlinear condition
Zh. Vychisl. Mat. Mat. Fiz., 65:6 (2025), 1029–1044
-
A model of deformations of a rod – console with a displacement limiter
Applied Mathematics & Physics, 56:1 (2024), 35–49
-
Problem on string system vibrations on star-shaped graph with nonlinear condition at node
Ufimsk. Mat. Zh., 16:1 (2024), 35–53
-
Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node
Mat. Zametki, 114:2 (2023), 316–320
-
A model of string system deformations on a star graph with nonlinear condition at the node
CMFD, 68:4 (2022), 635–652
-
Model of deformations of a stieltjes string system with a nonlinear condition
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022), 528–545
-
Stieltjes differential in impulse nonlinear problems
Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 9–12
-
On the wave equation with the hysteresis type condition
Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018), 235–242
-
Sturm–Liouville oscillation theory for impulsive problems
Uspekhi Mat. Nauk, 63:1(379) (2008), 111–154
-
An Irregular Extension of the Oscillation Theory of the Sturm–Liouville Spectral Problem
Mat. Zametki, 82:4 (2007), 578–582
-
Some questions of the qualitative theory of nonsmooth Sturm-Liouville problems
Tr. Semim. im. I. G. Petrovskogo, 26 (2007), 255–274
-
The Influence function is Simpler
and Better than Green's Function
for a Generalized Stieltjes String
Mat. Zametki, 80:1 (2006), 149–153
© , 2025