RUS  ENG
Full version
PEOPLE

Abyzov Adel Nailevich

Publications in Math-Net.Ru

  1. Essentially quasi-injective modules and their direct sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7,  9–23
  2. Rings, matrices over which are representable as the sum of two potent matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  90–94
  3. Finite topologies and their applications in linear algebra

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1,  87–96
  4. On some properties of sequences of traces of powers of matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3,  85–88
  5. Rings over which matrices are sums of idempotent and $q$-potent matrices

    Sibirsk. Mat. Zh., 62:1 (2021),  3–18
  6. Fagnano's method for solving algebraic equations: its historical overview and development

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163:3-4 (2021),  304–348
  7. Rings whose every right ideal is a finite direct sum of automorphism-invariant right ideals

    Sibirsk. Mat. Zh., 61:2 (2020),  239–254
  8. Direct projective modules, direct injective modules, and their generalizations

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019),  125–139
  9. Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159 (2019),  3–45
  10. Modules coinvariant under the idempotent endomorphisms of their covers

    Sibirsk. Mat. Zh., 60:6 (2019),  1191–1208
  11. Strongly $q$-nil-clean rings

    Sibirsk. Mat. Zh., 60:2 (2019),  257–273
  12. Studies in algebra and mathematical logic at the Kazan University

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018),  3–7
  13. Almost Projective and Almost Injective Modules

    Mat. Zametki, 103:1 (2018),  3–19
  14. Rings over which every module is an $I_0^*$-module

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12,  3–15
  15. On Some Matrix Analogs of the Little Fermat Theorem

    Mat. Zametki, 101:2 (2017),  163–168
  16. Dual automorphism-invariant modules over perfect rings

    Sibirsk. Mat. Zh., 58:5 (2017),  959–971
  17. Formal matrices and rings close to regular

    Fundam. Prikl. Mat., 21:1 (2016),  5–21
  18. Rings of formal matrices close to regular ones

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 10,  57–60
  19. On certain classes of rings of formal matrices

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3,  3–14
  20. Formal matrix rings and their isomorphisms

    Sibirsk. Mat. Zh., 56:6 (2015),  1199–1214
  21. Retractable and coretractable modules

    Fundam. Prikl. Mat., 19:2 (2014),  5–20
  22. Modules in which sums or intersections of two direct summands are direct summands

    Fundam. Prikl. Mat., 19:1 (2014),  3–11
  23. $I_0^*$-modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  3–17
  24. CS-Rickart modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  59–63
  25. Regular semiartinian rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1,  3–11
  26. On some classes of semiartinian rings

    Sibirsk. Mat. Zh., 53:5 (2012),  955–966
  27. Generalized $SV$-rings of bounded index of nilpotency

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 12,  3–14
  28. Fully idempotent homomorphisms

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 8,  3–8
  29. Homomorphisms close to regular and their applications

    Fundam. Prikl. Mat., 16:7 (2010),  3–38
  30. Generalized $SV$-modules

    Sibirsk. Mat. Zh., 50:3 (2009),  481–488
  31. Submodules and direct summands

    Fundam. Prikl. Mat., 14:6 (2008),  3–31
  32. Rings over which all modules are $I_0$-modules. II

    Fundam. Prikl. Mat., 14:2 (2008),  3–12
  33. Weakly regular modules over normal rings

    Sibirsk. Mat. Zh., 49:4 (2008),  721–738
  34. Direct sums of weakly regular modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  74
  35. Weakly regular modules

    Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3,  3–6
  36. Closure of weakly regular modules with respect to direct sums

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9,  3–5
  37. 1-strictly weakly regular modules and rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7,  3–7

  38. Marat Mirzaevich Arslanov (on his eightieth birthday)

    Uspekhi Mat. Nauk, 79:2(476) (2024),  189–193
  39. Algebraic studies at Kazan University from V. V. Morozov to our days

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012),  44–59


© Steklov Math. Inst. of RAS, 2024