|
|
Publications in Math-Net.Ru
-
Essentially quasi-injective modules and their direct sums
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 7, 9–23
-
Rings, matrices over which are representable as the sum of two potent matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12, 90–94
-
Finite topologies and their applications in linear algebra
Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 1, 87–96
-
On some properties of sequences of traces of powers of matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3, 85–88
-
Rings over which matrices are sums of idempotent and $q$-potent matrices
Sibirsk. Mat. Zh., 62:1 (2021), 3–18
-
Fagnano's method for solving algebraic equations: its historical overview and development
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163:3-4 (2021), 304–348
-
Rings whose every right ideal is a finite direct sum of automorphism-invariant right ideals
Sibirsk. Mat. Zh., 61:2 (2020), 239–254
-
Direct projective modules, direct injective modules, and their generalizations
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 164 (2019), 125–139
-
Modules that are invariant with respect to automorphisms and idempotent endomorphisms of their hulls and covers
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 159 (2019), 3–45
-
Modules coinvariant under the idempotent endomorphisms of their covers
Sibirsk. Mat. Zh., 60:6 (2019), 1191–1208
-
Strongly $q$-nil-clean rings
Sibirsk. Mat. Zh., 60:2 (2019), 257–273
-
Studies in algebra and mathematical logic at the Kazan University
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 157 (2018), 3–7
-
Almost Projective and Almost Injective Modules
Mat. Zametki, 103:1 (2018), 3–19
-
Rings over which every module is an $I_0^*$-module
Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12, 3–15
-
On Some Matrix Analogs of the Little Fermat Theorem
Mat. Zametki, 101:2 (2017), 163–168
-
Dual automorphism-invariant modules over perfect rings
Sibirsk. Mat. Zh., 58:5 (2017), 959–971
-
Formal matrices and rings close to regular
Fundam. Prikl. Mat., 21:1 (2016), 5–21
-
Rings of formal matrices close to regular ones
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 10, 57–60
-
On certain classes of rings of formal matrices
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 3, 3–14
-
Formal matrix rings and their isomorphisms
Sibirsk. Mat. Zh., 56:6 (2015), 1199–1214
-
Retractable and coretractable modules
Fundam. Prikl. Mat., 19:2 (2014), 5–20
-
Modules in which sums or intersections of two direct summands are direct summands
Fundam. Prikl. Mat., 19:1 (2014), 3–11
-
$I_0^*$-modules
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 3–17
-
CS-Rickart modules
Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 59–63
-
Regular semiartinian rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1, 3–11
-
On some classes of semiartinian rings
Sibirsk. Mat. Zh., 53:5 (2012), 955–966
-
Generalized $SV$-rings of bounded index of nilpotency
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 12, 3–14
-
Fully idempotent homomorphisms
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 8, 3–8
-
Homomorphisms close to regular and their applications
Fundam. Prikl. Mat., 16:7 (2010), 3–38
-
Generalized $SV$-modules
Sibirsk. Mat. Zh., 50:3 (2009), 481–488
-
Submodules and direct summands
Fundam. Prikl. Mat., 14:6 (2008), 3–31
-
Rings over which all modules are $I_0$-modules. II
Fundam. Prikl. Mat., 14:2 (2008), 3–12
-
Weakly regular modules over normal rings
Sibirsk. Mat. Zh., 49:4 (2008), 721–738
-
Direct sums of weakly regular modules
Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2, 74
-
Weakly regular modules
Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 3, 3–6
-
Closure of weakly regular modules with respect to direct sums
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 9, 3–5
-
1-strictly weakly regular modules and rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 7, 3–7
-
Marat Mirzaevich Arslanov (on his eightieth birthday)
Uspekhi Mat. Nauk, 79:2(476) (2024), 189–193
-
Algebraic studies at Kazan University from V. V. Morozov to our days
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:2 (2012), 44–59
© , 2024