|
|
Publications in Math-Net.Ru
-
The method of fictitious extrema localization in the problem of global optimization
Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 78–80
-
On the application of the solution of the degenerate nonlinear Burgers equation with a small parameter and the theory of $p$-regularity
Dokl. RAN. Math. Inf. Proc. Upr., 512 (2023), 5–9
-
$p$-Regularity theory and the existence of a solution to a boundary value problem continuously dependent on boundary conditions
Zh. Vychisl. Mat. Mat. Fiz., 63:6 (2023), 920–936
-
On the equivalence of singular and ill-posed problems: The $p$-factor regularization method
Dokl. RAN. Math. Inf. Proc. Upr., 506 (2022), 41–44
-
Convergence of continuous analogues of numerical methods for solving degenerate optimization problems and systems of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 62:10 (2022), 1632–1638
-
A new class of Lyapunov functions for stability analysis of singular dynamical systems. Elements of $p$-regularity theory
Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 8–12
-
Some properties of smooth convex functions and Newton’s method
Dokl. RAN. Math. Inf. Proc. Upr., 497 (2021), 12–17
-
A new view of some fundamental results in optimization
Zh. Vychisl. Mat. Mat. Fiz., 60:9 (2020), 1462–1471
-
Locally polynomial method for solving systems of linear inequalities
Zh. Vychisl. Mat. Mat. Fiz., 60:2 (2020), 216–220
-
A new proof of the Kuhn–Tucker and Farkas theorems
Zh. Vychisl. Mat. Mat. Fiz., 58:7 (2018), 1084–1088
-
The $p$-order maximum principle for an irregular optimal control problem
Zh. Vychisl. Mat. Mat. Fiz., 57:9 (2017), 1471–1476
-
On reductibility of degenerate optimization problems to regular operator equations
Zh. Vychisl. Mat. Mat. Fiz., 56:12 (2016), 2031
-
$p$th-order approximation of the solution set of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013), 1951–1969
-
New numerical methods and some applied aspects of the $p$-regularity theory
Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006), 1987–2000
-
The theorem on existence of singular solutions to nonlinear equations
Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2005, no. 12, 22–36
-
Solvability of the Cauchy Problem for a First-Order Partial Differential Equation in the Degenerate Case
Differ. Uravn., 38:2 (2002), 216–221
-
Convergence of the penalty function method for an unbounded solution set
Zh. Vychisl. Mat. Mat. Fiz., 42:5 (2002), 641–652
-
On the choice of a method for solving a general system of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001), 675–679
-
A modified $2$-factor method for solving systems of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001), 558–569
-
Generalization of the concept of $p$-regularity and higher order optimality conditions
Zh. Vychisl. Mat. Mat. Fiz., 41:2 (2001), 207–216
-
An approach to finding singular solutions to a general system of nonlinear equations
Zh. Vychisl. Mat. Mat. Fiz., 40:3 (2000), 365–377
-
Gradient method for linear approximate schemes
Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999), 1625–1632
-
On the stabilizing properties of the gradient method for unstable approximate schemes
Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999), 1453–1463
-
On the gradient method in a Hilbert space in the case of nonisolated minima
Zh. Vychisl. Mat. Mat. Fiz., 39:4 (1999), 549–552
-
Fast Wavelet Transform for Discrete Periodic Signals and Patterns
Probl. Peredachi Inf., 34:2 (1998), 77–85
-
Application of nonsmooth optimization methods to solving nonlinear operator equations
Zh. Vychisl. Mat. Mat. Fiz., 38:9 (1998), 1452–1460
-
Methods for finding singular solutions of nonlinear operator equations in the absence of 2-regularity
Zh. Vychisl. Mat. Mat. Fiz., 37:10 (1997), 1157–1162
-
On a local regularization of some classes of nonlinear operator
equations
Zh. Vychisl. Mat. Mat. Fiz., 36:7 (1996), 15–29
-
The method of gradient descent for minimizing non-convex functions
Zh. Vychisl. Mat. Mat. Fiz., 34:3 (1994), 344–359
-
Factor analysis of nonlinear mappings and generalization of the notion of 2-regularity
Zh. Vychisl. Mat. Mat. Fiz., 33:4 (1993), 631–634
-
The reversibility of homogeneous polynomial mappings of degree $p$
Zh. Vychisl. Mat. Mat. Fiz., 33:3 (1993), 323–334
-
Properties of regular mathematical programming problems
Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992), 162–167
-
A model and a method for solving an extremal allocation problem in
the design of high-speed computers
Dokl. Akad. Nauk SSSR, 314:3 (1990), 573–575
-
The interconnection between Lagrange's theorem and the geometry of
feasible sets
Dokl. Akad. Nauk SSSR, 300:6 (1988), 1289–1291
-
Methods for solving degenerate problems
Zh. Vychisl. Mat. Mat. Fiz., 28:7 (1988), 1097–1102
-
The implicit function theorem in degenerate problems
Uspekhi Mat. Nauk, 42:5(257) (1987), 215–216
-
The unconditional minimization of non-convex functions
Zh. Vychisl. Mat. Mat. Fiz., 27:11 (1987), 1752–1756
-
On the choice of parameters in the method of penalty functions
Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987), 1451–1461
-
Stabilizing properties of the gradient method
Zh. Vychisl. Mat. Mat. Fiz., 26:1 (1986), 134–137
-
The accelerated Newton method for solving functional equations
Dokl. Akad. Nauk SSSR, 281:6 (1985), 1293–1297
-
Two schemes of the nonlinear optimization method in extremal problems
Zh. Vychisl. Mat. Mat. Fiz., 24:7 (1984), 986–992
-
Necessary and sufficient conditions for $P$th order optimality
Zh. Vychisl. Mat. Mat. Fiz., 24:2 (1984), 203–209
© , 2024