RUS  ENG
Full version
PEOPLE

Cherednik Ivan Vladimirovich

Publications in Math-Net.Ru

  1. On the existence of non-negative bases in subgroups of free groups of Schreier varieties

    Mat. Vopr. Kriptogr., 10:4 (2019),  53–65
  2. A note on Artin's constant

    Mosc. Math. J., 15:2 (2015),  283–291
  3. Non-Gatherable Triples for Non-Affine Root Systems

    SIGMA, 4 (2008), 079, 12 pp.
  4. Modeling of the many-component schroedinger solitons dynamics

    Mat. Model., 4:9 (1992),  69–81
  5. Solutions of the Knizhnik–Zamolodchikov trigonometric equation

    Funktsional. Anal. i Prilozhen., 25:4 (1991),  69–71
  6. Perturbations of single-soliton solutions of a vector two-component nonlinear Schrödinger equation

    Dokl. Akad. Nauk SSSR, 312:3 (1990),  588–592
  7. Computation of monodromy of certain $W$-invariant local systems of types $B$, $C$, and $D$

    Funktsional. Anal. i Prilozhen., 24:1 (1990),  88–89
  8. Generalized braid groups and local $r$-matrix systems

    Dokl. Akad. Nauk SSSR, 307:1 (1989),  49–53
  9. Many-soliton components of solutions of nonlinear Schrödinger equation with perturbing term

    TMF, 78:1 (1989),  35–44
  10. Modeling of the restoration of the envelope of supershort optical impulses from the characteristics of their nonlinear interaction with single-soliton test impulses

    Dokl. Akad. Nauk SSSR, 299:1 (1988),  110–114
  11. $g$-analogues of Gel'fand–Tsetlin bases

    Funktsional. Anal. i Prilozhen., 22:1 (1988),  89–90
  12. An analogue of the character formula for Hekke algebras

    Funktsional. Anal. i Prilozhen., 21:2 (1987),  94–95
  13. On restricted $N$-soliton solutions of the nonlinear Schrödinger equation

    TMF, 71:1 (1987),  13–20
  14. Irreducible representations of elliptic quantum $R$-algebras

    Dokl. Akad. Nauk SSSR, 291:1 (1986),  49–53
  15. Modeling of the self-action of supershort impulses in fibrous waveguides by the method of the inverse scattering problem

    Dokl. Akad. Nauk SSSR, 289:2 (1986),  336–340
  16. “Quantum” deformations of irreducible finite-dimensional representations of $\mathfrak{gl}_N$

    Dokl. Akad. Nauk SSSR, 287:5 (1986),  1076–1079
  17. Special bases of irreducible representations of a degenerate affine Hecke algebra

    Funktsional. Anal. i Prilozhen., 20:1 (1986),  87–88
  18. Functional realizations of basis representations of factoring Lie groups and algebras

    Funktsional. Anal. i Prilozhen., 19:3 (1985),  36–52
  19. Some finite-dimensional representations of generalized Sklyanin algebras

    Funktsional. Anal. i Prilozhen., 19:1 (1985),  89–90
  20. Elliptic curves and matrix soliton differential equations

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 22 (1984),  205–265
  21. Factorizing particles on a half-line and root systems

    TMF, 61:1 (1984),  35–44
  22. Hamilton theory of steady-state differential equations with an elliptic pencil

    Dokl. Akad. Nauk SSSR, 271:1 (1983),  51–55
  23. Definition of functions for generalized affine Lie algebras

    Funktsional. Anal. i Prilozhen., 17:3 (1983),  93–95
  24. Becklund–Darboux transformation for classical Yang–Baxter bundles

    Funktsional. Anal. i Prilozhen., 17:2 (1983),  88–89
  25. Integrable differential equations and coverings of elliptic curves

    Izv. Akad. Nauk SSSR Ser. Mat., 47:2 (1983),  384–406
  26. On the group-theoretical interpretation of Baker functions and $\tau$-functions

    Uspekhi Mat. Nauk, 38:6(234) (1983),  133–134
  27. The abstract Hamiltonian formalism for the classical Yang–Baxter bundles

    Uspekhi Mat. Nauk, 38:3(231) (1983),  3–21
  28. On the regularity of the “finite-zone” solutions of integrable matrix differential equations

    Dokl. Akad. Nauk SSSR, 266:3 (1982),  593–597
  29. Quantum and classical lattices for two-dimensional principal Chiral fields

    Funktsional. Anal. i Prilozhen., 16:1 (1982),  89–90
  30. Solutions of algebraic type of asymmetric differential equations

    Funktsional. Anal. i Prilozhen., 15:3 (1981),  93–94
  31. Algebraic aspects of two-dimensional chiral fields. II

    Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 18 (1981),  73–150
  32. Algebraic aspects of two-dimensional chiral fields. I

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 17 (1981),  175–218
  33. On a quantum model for two-dimensional principal chiral fields

    Uspekhi Mat. Nauk, 36:2(218) (1981),  173–174
  34. Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models

    TMF, 47:2 (1981),  225–229
  35. Reality conditions in “finite-zone integration”

    Dokl. Akad. Nauk SSSR, 252:5 (1980),  1104–1108
  36. On a method of constructing factorized $S$ matrices in elementary functions

    TMF, 43:1 (1980),  117–119
  37. Certain $S$-matrices associated with Abelian manifolds

    Dokl. Akad. Nauk SSSR, 249:5 (1979),  1095–1098
  38. On the finite-zonal solutions to the duality equation over $\mathrm{S}^4$ and two-dimensional relativistically invariant systems

    Dokl. Akad. Nauk SSSR, 246:3 (1979),  575–578
  39. One generalization of the KdV and sin-Gordon differential equations

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  81–82
  40. Conservation laws and elements of scattering theory for principal chiral fields ($d=1$)

    TMF, 41:2 (1979),  236–244
  41. Local conservation laws of principal chiral fields $(d=1)$

    TMF, 38:2 (1979),  179–185
  42. Differential equations for the Baker–Akhiezer functions of algebraic curves

    Funktsional. Anal. i Prilozhen., 12:3 (1978),  45–54
  43. An analog of Cartan duality over $p$-adic fields

    Izv. Akad. Nauk SSSR Ser. Mat., 40:4 (1976),  727–735
  44. Uniformization of algebraic curves by discrete arithmetic subgroups of $PGL_2(k_w)$ with compact quotients

    Mat. Sb. (N.S.), 100(142):1(5) (1976),  59–88
  45. Towers of algebraic curves uniformized by discrete subgroups of $PGL_2(k_w)\times E$

    Mat. Sb. (N.S.), 99(141):2 (1976),  211–247
  46. Uniformization with discrete subgroups of $PGL_2(k_w)\times PSL_2(k_v)$

    Funktsional. Anal. i Prilozhen., 9:2 (1975),  95–96
  47. Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$

    Uspekhi Mat. Nauk, 30:3(183) (1975),  181–182
  48. On a problem concerning the Shafarevich map

    Mat. Sb. (N.S.), 90(132):2 (1973),  231–234


© Steklov Math. Inst. of RAS, 2025