RUS  ENG
Full version
PEOPLE

Oskolkov Anatolii Petrovich

Publications in Math-Net.Ru

  1. О некоторых псевдопараболических системах уравнений с малым параметром, возникающих при численном анализе уравнений жидкостей Кельвина–Фойгта

    Vestnik Chelyabinsk. Gos. Univ., 1999, no. 4,  155–173
  2. On the estimation of the Hausdorff dimension of the attractor for two-dimensional equations of Oldroyd fluids

    Zap. Nauchn. Sem. POMI, 226 (1996),  109–119
  3. Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations in classes of smooth functions

    Zap. Nauchn. Sem. POMI, 230 (1995),  214–242
  4. Smooth global solutions of initial boundary-value problems for the equations of Oldroyd fluids and of their $\varepsilon$-approximations

    Zap. Nauchn. Sem. POMI, 229 (1995),  247–267
  5. The penalty method for the equations of viscoelastic media

    Zap. Nauchn. Sem. POMI, 224 (1995),  267–278
  6. Nonlocal problems for the equations of Kelvin–Voight fluids and their $\varepsilon$-approximations

    Zap. Nauchn. Sem. POMI, 221 (1995),  185–207
  7. Smooth and convergent $\varepsilon$-approximations of the first initial boundary-value problem for the equations of Kelvin–Voight fluids

    Zap. Nauchn. Sem. POMI, 219 (1994),  186–212
  8. Smooth and convergent $\varepsilon$-approximations of the first boundary-value problem for the equations of Kelvin–Voight fluids and Oldroyd fluids

    Zap. Nauchn. Sem. POMI, 215 (1994),  246–255
  9. Time periodic solutions of the smooth convergent and dissipative $\varepsilon$-approximations for the modified Navier–Stokes equations.

    Zap. Nauchn. Sem. POMI, 213 (1994),  116–130
  10. Initial-boundary value problem with a free surface condition for the modified Navier–Stokes equations

    Zap. Nauchn. Sem. POMI, 213 (1994),  93–115
  11. Initial-boundary value problem with a free surface condition for the penalized equations of aqueous solutions of polymers

    Zap. Nauchn. Sem. POMI, 210 (1994),  241–250
  12. Initial boundary-value problems for equations of slightly compressible Jeffreys–Oldroyd fluids

    Zap. Nauchn. Sem. POMI, 208 (1993),  200–218
  13. The initial-boundary value problem with a free surface condition for the $\varepsilon$-approximations of the Navier–Stokes equations and some their regularizations

    Zap. Nauchn. Sem. POMI, 205 (1993),  38–70
  14. On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids

    Zap. Nauchn. Sem. POMI, 202 (1992),  158–184
  15. To the stability theory for the solutions of the semilinear dissipative Sobolev type equations

    Zap. Nauchn. Sem. POMI, 200 (1992),  139–148
  16. Nonlocal problems for some class nonlinear dissipative Sobolev type equations

    Zap. Nauchn. Sem. POMI, 199 (1992),  91–113
  17. Nonlocal problems for the equations of motion of the Kelvin–Voight fluids

    Zap. Nauchn. Sem. LOMI, 197 (1992),  120–158
  18. Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations

    Zap. Nauchn. Sem. LOMI, 198 (1991),  31–48
  19. Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids

    Zap. Nauchn. Sem. LOMI, 189 (1991),  101–121
  20. Nonlocal problems for the equations of filtration of nonnewtonian fluids in porous media

    Zap. Nauchn. Sem. LOMI, 189 (1991),  82–100
  21. Some nonlocal problems for the modified Navier–Stokes equations

    Zap. Nauchn. Sem. LOMI, 188 (1991),  105–127
  22. Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids

    Trudy Mat. Inst. Steklov., 188 (1990),  59–87
  23. Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids. II

    Zap. Nauchn. Sem. LOMI, 185 (1990),  111–124
  24. An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem

    Zap. Nauchn. Sem. LOMI, 182 (1990),  123–130
  25. Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications

    Zap. Nauchn. Sem. LOMI, 182 (1990),  86–101
  26. Nonlocal problems of the theory of the equations of motion for Kelvin–Voight fluids

    Zap. Nauchn. Sem. LOMI, 181 (1990),  146–185
  27. To the theory of global solvability on $[0,\infty)$ initial boundary-value problems for the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids

    Zap. Nauchn. Sem. LOMI, 180 (1990),  121–141
  28. Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids

    Zap. Nauchn. Sem. LOMI, 180 (1990),  63–75
  29. On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids

    Zap. Nauchn. Sem. LOMI, 171 (1989),  174–181
  30. Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids

    Trudy Mat. Inst. Steklov., 179 (1988),  126–164
  31. On the dynamical system generated by the equations of motion of the Oldroyd fluids of the order $L$

    Zap. Nauchn. Sem. LOMI, 164 (1987),  47–53
  32. Convergent difference schemes for the equations of filtration of fluids with delay. II

    Zap. Nauchn. Sem. LOMI, 163 (1987),  138–142
  33. On the equations of motion of linear viscoelastic fluids and the equations of filtration of fluids with delay

    Zap. Nauchn. Sem. LOMI, 163 (1987),  132–137
  34. Attractors and dynamical systems generated by initial-boundary value problems for equations of motion of viscoelastic liquids

    Zap. Nauchn. Sem. LOMI, 162 (1987),  159–168
  35. Convergent difference schemes for equations of motion of Oldroyd fluids

    Zap. Nauchn. Sem. LOMI, 159 (1987),  143–152
  36. On the dynamical system generated bу the equations of motion of Oldroyd fluids

    Zap. Nauchn. Sem. LOMI, 155 (1986),  136–141
  37. Convergent finite-difference schemes for the equations of filtration of fluids with delay

    Zap. Nauchn. Sem. LOMI, 152 (1986),  86–93
  38. On the limit behaviour and the attractor for the equations of motion of Oldroyd fluids

    Zap. Nauchn. Sem. LOMI, 152 (1986),  67–71
  39. On correctness of the initial-boundary value problems for the equations of fluid filtration with delay

    Zap. Nauchn. Sem. LOMI, 150 (1986),  76–86
  40. On the solvability of the main initial-boundary value problem for the equations of motion of Oldroyd fluids on $(0,\infty)$ and the behaviour of its solutions as $t\to+\infty$

    Zap. Nauchn. Sem. LOMI, 150 (1986),  48–52
  41. Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids

    Zap. Nauchn. Sem. LOMI, 147 (1985),  110–119
  42. On the theory of Maxwell fluids. III

    Zap. Nauchn. Sem. LOMI, 145 (1985),  164–172
  43. Unsteady flows of viscoelastic fluids

    Trudy Mat. Inst. Steklov., 159 (1983),  103–131
  44. On the theory of Maxwell liquids. II

    Zap. Nauchn. Sem. LOMI, 131 (1983),  106–113
  45. On the theory of nonstationary flows of the Maxwell liquids and nonlinear visсo-elastio liquids

    Zap. Nauchn. Sem. LOMI, 127 (1983),  158–168
  46. On the theory of nonstationary flows of nonlinear visco-elastlc liquids

    Zap. Nauchn. Sem. LOMI, 120 (1982),  142–158
  47. Theory of nonstationary flows of Kelvin–Voigt fluids

    Zap. Nauchn. Sem. LOMI, 115 (1982),  191–202
  48. Certain model nonstationary systems in the theory of non-Newtonian fluids. IV

    Zap. Nauchn. Sem. LOMI, 110 (1981),  141–162
  49. On the theory of Maxwell liquids

    Zap. Nauchn. Sem. LOMI, 101 (1981),  119–127
  50. On the theory of the Voight liquids

    Zap. Nauchn. Sem. LOMI, 96 (1980),  233–236
  51. Model nonstationary systems in the theory of non-Newtonian fluids. III

    Zap. Nauchn. Sem. LOMI, 96 (1980),  205–232
  52. Some model nonstationary systems in the theory of non-Newtonian fluids. II

    Zap. Nauchn. Sem. LOMI, 84 (1979),  185–210
  53. Construction of characteristic functions for the system of Navier–Stokes–Voigt equations and the BBM equation

    Zap. Nauchn. Sem. LOMI, 69 (1977),  136–148
  54. Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids

    Zap. Nauchn. Sem. LOMI, 59 (1976),  133–177
  55. Certain model nonstationary systems in the theory of non-Newtonian fluids

    Trudy Mat. Inst. Steklov., 127 (1975),  32–57
  56. On admissible groups of transformations for some quasi-linearthir third-order equations

    Zap. Nauchn. Sem. LOMI, 52 (1975),  158–159
  57. On some quasilinears systems occuring in studing of motion of viscous fluids

    Zap. Nauchn. Sem. LOMI, 52 (1975),  128–157
  58. Certain convergent difference schemes for the Navier–Stokes equations

    Trudy Mat. Inst. Steklov., 125 (1973),  164–172
  59. The asymptotic behavior of the solutions of certain systems with a small parameter that approximate the Navier–Stokes system of equations

    Trudy Mat. Inst. Steklov., 125 (1973),  147–163
  60. Uniqueness and global solvability for boundary-value problems for the equations of motion of water solutions of polymers

    Zap. Nauchn. Sem. LOMI, 38 (1973),  98–136
  61. On the convergent difference schemes for equations of water solutions mouvement of polymers

    Zap. Nauchn. Sem. LOMI, 35 (1973),  21–35
  62. On the global solvability of a boundary value problem for a system of third order occuring in studying of motion of wiscous fluid

    Zap. Nauchn. Sem. LOMI, 27 (1972),  145–160
  63. A priori estimates of weighted first derivatives for certain classes of nonuniformly elliptic quasilinear equations in an unbounded domain

    Trudy Mat. Inst. Steklov., 116 (1971),  152–161
  64. Certain classes on non-uniformly elliptic quasilinear equations. II

    Trudy Mat. Inst. Steklov., 116 (1971),  137–151
  65. On the solvability of the Diricnlet problem for quasi-linear elliptic systems in non-bounded domains in a class of bounded runctions

    Zap. Nauchn. Sem. LOMI, 21 (1971),  104–111
  66. On aquasi-linear parabolic system with a small parameter approximating the Navier–Stokes system

    Zap. Nauchn. Sem. LOMI, 21 (1971),  79–103
  67. Interior estimates of the first derivatives for a certain class of quasilinear elliptic systems

    Trudy Mat. Inst. Steklov., 110 (1970),  102–106
  68. Nonlocal estimates of the first derivatives of the solutions of the first boundary value problem for certain classes of nonuniformly elliptic and nonuniformly parabolic equations and systems

    Trudy Mat. Inst. Steklov., 110 (1970),  65–101
  69. On the solvability of the Dirichlet problem for quasilinear elliptic equations in unbaunded domains

    Zap. Nauchn. Sem. LOMI, 14 (1969),  173–190
  70. On certain classes of non-uniformly elliptic quasilinear equations

    Zap. Nauchn. Sem. LOMI, 14 (1969),  156–172
  71. Nonlocal estimates of the first derivatives of solutions of the first boundary value problem for nonuniformly elliptic and nonuniformly parabolic nondivergence equations

    Zap. Nauchn. Sem. LOMI, 11 (1968),  6–72
  72. A remark on the estimate of Hölder constant for some non-uniform elliptic quasilinear equations

    Zap. Nauchn. Sem. LOMI, 7 (1968),  178–183
  73. Solvability of the Dirichlet problem for quasilinear elliptic equations in an unbounded region. I

    Trudy Mat. Inst. Steklov., 102 (1967),  128–136
  74. A priori estimates of the first derivatives of solutions of Dirichlet's problem for nonuniformly elliptic quasilinear equations

    Trudy Mat. Inst. Steklov., 102 (1967),  105–127
  75. Global estimates for the first derivatives of the solutions of Dirichlet problem for nonuniform quasilinear elliptic equations

    Zap. Nauchn. Sem. LOMI, 5 (1967),  37–109
  76. Some estimates for nonuniformly elliptic equations and systems

    Trudy Mat. Inst. Steklov., 92 (1966),  203–232
  77. Prior estimates of the first derivatives for two-dimensional quasi-linear strongly elliptic systems

    Trudy Mat. Inst. Steklov., 92 (1966),  192–202
  78. Prior estimates of first derivatives for two-dimensional linear strongly elliptic systems and elliptic mappings

    Trudy Mat. Inst. Steklov., 92 (1966),  182–191
  79. Hölder continuity of the generalized solutions of a class of quasi-linear systems

    Trudy Mat. Inst. Steklov., 70 (1964),  116–132
  80. On the solution of boundary-value problems for linear elliptic equations in an infinite region

    Dokl. Akad. Nauk SSSR, 153:1 (1963),  34–37

  81. Boris F. Skubenko. An essay on his life and scientific work

    Zap. Nauchn. Sem. POMI, 212 (1994),  5–9
  82. A. V. Malyshev, scientist and teacher

    Zap. Nauchn. Sem. POMI, 211 (1994),  7–13
  83. Ol'ga Aleksandrovna Ladyzhenskaya (on her sixtieth birthday)

    Uspekhi Mat. Nauk, 38:5(233) (1983),  215–223


© Steklov Math. Inst. of RAS, 2025