|
|
Publications in Math-Net.Ru
-
The decomposition of $C_p(X)$ into a countable union of subspaces with “good” properties implies “good” properties of $C_p(X)$
Tr. Mosk. Mat. Obs., 55 (1994), 310–322
-
Methods in the theory of cardinal invariants and the theory of mappings in application to function spaces
Sibirsk. Mat. Zh., 32:1 (1991), 116–130
-
A new look at certain classical objects of general topology
Uspekhi Mat. Nauk, 45:4(274) (1990), 167–168
-
Remainders over discrets. Some applications
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 4, 18–21
-
Almost Lindelöf and locally Lindelöf spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2, 60–63
-
Calibers of spaces of functions and the metrization problem for compact subsets of $C_p(X)$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 3, 21–24
-
Spaces that are projective with respect to classes of mappings
Tr. Mosk. Mat. Obs., 50 (1987), 138–155
-
Homeomorphisms of free topological groups do not preserve compactness
Mat. Zametki, 42:3 (1987), 455–462
-
The countable character of $X$ in $\beta X$ versus the countable character of the diagonal in $X\times X$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 5, 16–19
-
The smallest subring of the ring $C_p(C_p(X))$, containing $X\cup\{1\}$ and everywhere dense in $C_p(C_p(X))$
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 1, 20–23
-
When is the space $C_p(X)$ $\sigma$-countably-compact?
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1, 70–72
-
Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number
Mat. Zametki, 37:3 (1985), 441–451
-
The multiplicativity of some properties of mapping spaces in the topology of pointwise convergence
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 6, 36–39
-
A supertopological cardinal invariant
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4, 26–29
-
On cardinal invariants of Suslin number type
Dokl. Akad. Nauk SSSR, 270:4 (1983), 795–798
-
On a method of constructing examples of $M$-equivalent spaces
Uspekhi Mat. Nauk, 38:6(234) (1983), 127–128
-
An inverse boundary value problem in magnetosphere investigations
Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 22–25
© , 2024