RUS  ENG
Full version
PEOPLE

Tkachuk V V

Publications in Math-Net.Ru

  1. The decomposition of $C_p(X)$ into a countable union of subspaces with “good” properties implies “good” properties of $C_p(X)$

    Tr. Mosk. Mat. Obs., 55 (1994),  310–322
  2. Methods in the theory of cardinal invariants and the theory of mappings in application to function spaces

    Sibirsk. Mat. Zh., 32:1 (1991),  116–130
  3. A new look at certain classical objects of general topology

    Uspekhi Mat. Nauk, 45:4(274) (1990),  167–168
  4. Remainders over discrets. Some applications

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1990, no. 4,  18–21
  5. Almost Lindelöf and locally Lindelöf spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 2,  60–63
  6. Calibers of spaces of functions and the metrization problem for compact subsets of $C_p(X)$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 3,  21–24
  7. Spaces that are projective with respect to classes of mappings

    Tr. Mosk. Mat. Obs., 50 (1987),  138–155
  8. Homeomorphisms of free topological groups do not preserve compactness

    Mat. Zametki, 42:3 (1987),  455–462
  9. The countable character of $X$ in $\beta X$ versus the countable character of the diagonal in $X\times X$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 5,  16–19
  10. The smallest subring of the ring $C_p(C_p(X))$, containing $X\cup\{1\}$ and everywhere dense in $C_p(C_p(X))$

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1987, no. 1,  20–23
  11. When is the space $C_p(X)$ $\sigma$-countably-compact?

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1986, no. 1,  70–72
  12. Duality with respect to the functor $C_p$ and cardinal invariants of the type of the Souslin number

    Mat. Zametki, 37:3 (1985),  441–451
  13. The multiplicativity of some properties of mapping spaces in the topology of pointwise convergence

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 6,  36–39
  14. A supertopological cardinal invariant

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1984, no. 4,  26–29
  15. On cardinal invariants of Suslin number type

    Dokl. Akad. Nauk SSSR, 270:4 (1983),  795–798
  16. On a method of constructing examples of $M$-equivalent spaces

    Uspekhi Mat. Nauk, 38:6(234) (1983),  127–128
  17. An inverse boundary value problem in magnetosphere investigations

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5,  22–25


© Steklov Math. Inst. of RAS, 2024