RUS  ENG
Full version
PEOPLE

Gogoladze Larry Davidovich

Publications in Math-Net.Ru

  1. Unconditional Convergence of General Fourier Series

    Trudy Mat. Inst. Steklova, 319 (2022),  83–93
  2. General Fourier coefficients and convergence almost everywhere

    Izv. RAN. Ser. Mat., 85:2 (2021),  60–72
  3. Differentiable functions and general orthonormal systems

    Mosc. Math. J., 19:4 (2019),  695–707
  4. Unconditional convergence of Fourier series for functions of bounded variation

    Sibirsk. Mat. Zh., 59:1 (2018),  86–94
  5. Convergence of Fourier Series with Respect to General Orthonormal Systems

    Mat. Zametki, 99:4 (2016),  618–622
  6. On absolute convergence of multiple Fourier series

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9,  12–21
  7. On the Fourier coefficients of functions of bounded variation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 8,  14–23
  8. Some classes of functions and Fourier coefficients with respect to general orthonormal systems

    Trudy Mat. Inst. Steklova, 280 (2013),  162–174
  9. Fourier Coefficients of Continuous Functions

    Mat. Zametki, 91:5 (2012),  691–703
  10. On the Partial Sums of the Fourier Series of Functions of Bounded Variation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154:3 (2012),  121–128
  11. On the problem of reconstructing the coefficients of convergent multiple function series

    Izv. RAN. Ser. Mat., 72:2 (2008),  83–90
  12. Absolute convergence of Fourier–Haar series of functions of two variables

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  14–25
  13. On strong summability almost everywhere

    Mat. Sb. (N.S.), 135(177):2 (1988),  158–168
  14. On the approximation of functions of several variables by linear means

    Trudy Mat. Inst. Steklov., 180 (1987),  92–93
  15. On the existence of conjugate functions of several variables

    Mat. Sb. (N.S.), 125(167):4(12) (1984),  481–488
  16. Boundedness of convergent mean multiple functional series

    Mat. Zametki, 34:6 (1983),  845–855
  17. On $(H,k)$-summability of multiple trigonometric Fourier series

    Izv. Akad. Nauk SSSR Ser. Mat., 41:4 (1977),  937–958
  18. The question of $A^*$-summability of double trigonometric Fourier series

    Mat. Zametki, 11:2 (1972),  145–150
  19. On $(H,k)$ summability of multiple trigonometric Fourier series

    Dokl. Akad. Nauk SSSR, 200:6 (1971),  1266–1268


© Steklov Math. Inst. of RAS, 2024