RUS  ENG
Full version
PEOPLE

Gazizov Rafail Kavyevich

Publications in Math-Net.Ru

  1. Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators

    Sib. Èlektron. Mat. Izv., 17 (2020),  604–614
  2. Group classification and symmetry reduction of three-dimensional nonlinear anomalous diffusion equation

    Ufimsk. Mat. Zh., 11:4 (2019),  14–28
  3. Operator of invariant differentiation and its application for integrating systems of ordinary differential equations

    Ufimsk. Mat. Zh., 9:4 (2017),  12–21
  4. Approximate symmetries and solutions of the Kompaneets equation

    Prikl. Mekh. Tekh. Fiz., 55:2 (2014),  38–42
  5. Fractional differential equations: change of variables and nonlocal symmetries

    Ufimsk. Mat. Zh., 4:4 (2012),  54–68
  6. Analysis of parallelization efficiency of the ANSYS Multiphysics solvers in simulation of linear friction welding

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 9,  64–75
  7. Classification of approximate Lie algebras with three essential vectors

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10,  3–17
  8. Similarity of approximate transformation groups

    Sibirsk. Mat. Zh., 51:1 (2010),  3–15
  9. Классификация неподобных приближенных алгебр Ли с двумя существенными симметриями на плоскости

    Matem. Mod. Kraev. Zadachi, 3 (2008),  62–64
  10. Cимметрийный подход к дифференциальным уравнениям дробного порядка

    Matem. Mod. Kraev. Zadachi, 3 (2008),  59–61
  11. Approximately Invariant Solutions of Differential Equations with a Small Parameter

    Differ. Uravn., 41:3 (2005),  347–355
  12. Approximate equivalence transformations

    Differ. Uravn., 30:10 (1994),  1659–1664
  13. Approximate groups of transformations

    Differ. Uravn., 29:10 (1993),  1712–1732
  14. Approximate symmetries and preservation laws

    Trudy Mat. Inst. Steklov., 200 (1991),  35–45
  15. Perturbation methods in group analysis

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 34 (1989),  85–147
  16. Nonlocal symmetries. Heuristic approach

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 34 (1989),  3–83
  17. Approximate symmetry and formal linearization

    Prikl. Mekh. Tekh. Fiz., 30:2 (1989),  40–49
  18. Linearization and formal symmetries of the Korteweg-de Vries equation

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  781–784
  19. Approximate group analysis of the nonlinear equation $u_{tt}-(f(u)u_x)_x+\varepsilon\varphi(u)u_t=0$

    Differ. Uravn., 24:7 (1988),  1127–1138
  20. Approximate symmetries

    Mat. Sb. (N.S.), 136(178):4(8) (1988),  435–450
  21. Bäcklund transforms and nonlocal symmetries

    Dokl. Akad. Nauk SSSR, 297:1 (1987),  11–14
  22. Quasilocal symmetries of equations of nonlinear heat-conduction type

    Dokl. Akad. Nauk SSSR, 295:1 (1987),  75–78
  23. Group classification of equations of nonlinear filtration

    Dokl. Akad. Nauk SSSR, 293:5 (1987),  1033–1035

  24. Nail Khairullovich Ibragimov is 70 years old

    Ufimsk. Mat. Zh., 1:3 (2009),  160–163


© Steklov Math. Inst. of RAS, 2025