|
|
Publications in Math-Net.Ru
-
Integration of systems of two second-order ordinary differential equations with a small parameter that admit four essential operators
Sib. Èlektron. Mat. Izv., 17 (2020), 604–614
-
Group classification and symmetry reduction of three-dimensional nonlinear anomalous diffusion equation
Ufimsk. Mat. Zh., 11:4 (2019), 14–28
-
Operator of invariant differentiation and its application for integrating systems of ordinary differential equations
Ufimsk. Mat. Zh., 9:4 (2017), 12–21
-
Approximate symmetries and solutions of the Kompaneets equation
Prikl. Mekh. Tekh. Fiz., 55:2 (2014), 38–42
-
Fractional differential equations: change of variables and nonlocal symmetries
Ufimsk. Mat. Zh., 4:4 (2012), 54–68
-
Analysis of parallelization efficiency of the ANSYS Multiphysics solvers in simulation of linear friction welding
Vestnik YuUrGU. Ser. Mat. Model. Progr., 2011, no. 9, 64–75
-
Classification of approximate Lie algebras with three essential vectors
Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10, 3–17
-
Similarity of approximate transformation groups
Sibirsk. Mat. Zh., 51:1 (2010), 3–15
-
Классификация неподобных приближенных алгебр Ли с двумя существенными симметриями на плоскости
Matem. Mod. Kraev. Zadachi, 3 (2008), 62–64
-
Cимметрийный подход к дифференциальным уравнениям дробного порядка
Matem. Mod. Kraev. Zadachi, 3 (2008), 59–61
-
Approximately Invariant Solutions of Differential Equations with a Small Parameter
Differ. Uravn., 41:3 (2005), 347–355
-
Approximate equivalence transformations
Differ. Uravn., 30:10 (1994), 1659–1664
-
Approximate groups of transformations
Differ. Uravn., 29:10 (1993), 1712–1732
-
Approximate symmetries and preservation laws
Trudy Mat. Inst. Steklov., 200 (1991), 35–45
-
Perturbation methods in group analysis
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 34 (1989), 85–147
-
Nonlocal symmetries. Heuristic approach
Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 34 (1989), 3–83
-
Approximate symmetry and formal linearization
Prikl. Mekh. Tekh. Fiz., 30:2 (1989), 40–49
-
Linearization and formal symmetries of the Korteweg-de Vries
equation
Dokl. Akad. Nauk SSSR, 303:4 (1988), 781–784
-
Approximate group analysis of the nonlinear equation $u_{tt}-(f(u)u_x)_x+\varepsilon\varphi(u)u_t=0$
Differ. Uravn., 24:7 (1988), 1127–1138
-
Approximate symmetries
Mat. Sb. (N.S.), 136(178):4(8) (1988), 435–450
-
Bäcklund transforms and nonlocal symmetries
Dokl. Akad. Nauk SSSR, 297:1 (1987), 11–14
-
Quasilocal symmetries of equations of nonlinear heat-conduction
type
Dokl. Akad. Nauk SSSR, 295:1 (1987), 75–78
-
Group classification of equations of nonlinear filtration
Dokl. Akad. Nauk SSSR, 293:5 (1987), 1033–1035
-
Nail Khairullovich Ibragimov is 70 years old
Ufimsk. Mat. Zh., 1:3 (2009), 160–163
© , 2025