RUS  ENG
Full version
PEOPLE

Nessonov Nikolai Ivanovich

Publications in Math-Net.Ru

  1. Characters of the Infinite Symmetric Inverse Semigroup

    Funktsional. Anal. i Prilozhen., 54:3 (2020),  38–47
  2. A nonsingular action of the full symmetric group admits an equivalent invariant measure

    Zh. Mat. Fiz. Anal. Geom., 16:1 (2020),  46–54
  3. An analogue of Schur–Weyl duality for the unitary group of a $\mathrm{II}_1$-factor

    Mat. Sb., 210:3 (2019),  162–188
  4. Stable representations of the infinite symmetric group

    Izv. RAN. Ser. Mat., 79:6 (2015),  93–124
  5. KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups

    Funktsional. Anal. i Prilozhen., 47:2 (2013),  55–67
  6. Representations of $\mathfrak{S}_\infty$ admissible with respect to Young subgroups

    Mat. Sb., 203:3 (2012),  127–160
  7. On realizations of representations of the infinite symmetric group

    Zap. Nauchn. Sem. POMI, 403 (2012),  110–117
  8. Projective Characters of the Infinite Generalized Symmetric Group

    Funktsional. Anal. i Prilozhen., 42:1 (2008),  82–85
  9. Characters of projective representations of the infinite generalized symmetric group

    Mat. Sb., 199:10 (2008),  3–32
  10. KMS-states on group $GL(\infty)$ and admissible representations $GL(\infty)^X$

    Mat. Fiz. Anal. Geom., 11:1 (2004),  67–86
  11. Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$

    Mat. Fiz. Anal. Geom., 10:4 (2003),  524–556
  12. Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$

    Mat. Fiz. Anal. Geom., 10:2 (2003),  167–187
  13. A complete classification of the admissible representations of infinite-dimensional\quad classical matrix groups. II

    Mat. Fiz. Anal. Geom., 9:1 (2002),  79–94
  14. A complete classification of the admissible representatons of infinite-dimensional classical matrix groups. I

    Mat. Fiz. Anal. Geom., 8:3 (2001),  282–307
  15. On the decay of step for the Korteweg–de Vries–Burgers equation

    Funktsional. Anal. i Prilozhen., 26:2 (1992),  93–95
  16. A complete classification of the representations of $\mathrm{GL}(\infty)$ containing the identity representation of the unitary subgroup

    Mat. Sb. (N.S.), 130(172):2(6) (1986),  131–150
  17. Action of $T$-groups on von Neumann algebras and factors with countable fundamental groups

    Funktsional. Anal. i Prilozhen., 19:1 (1985),  64–65
  18. Description of finite measures in von Neumann factors of type III

    Izv. Vyssh. Uchebn. Zaved. Mat., 1984, no. 2,  68–71
  19. Description of representations of a group of invertible operators of a Hilbert space that contain the identity representation of the unitary subgroup

    Funktsional. Anal. i Prilozhen., 17:1 (1983),  79–80
  20. Structure of factors of type III$_\lambda$ ($0<\lambda\le1$)

    Funktsional. Anal. i Prilozhen., 14:3 (1980),  89–90
  21. Asymptotic algebra and outer conjugacy classes of automorphisms of factors

    Izv. Akad. Nauk SSSR Ser. Mat., 44:3 (1980),  510–532
  22. Invariant states on asymptotically Abelian factors of type III

    Funktsional. Anal. i Prilozhen., 13:2 (1979),  81–82

  23. Grigori Iosifovich Olshanski (on his 70th birthday)

    Uspekhi Mat. Nauk, 74:3(447) (2019),  193–213
  24. Vladimir Fedorovich Molchanov (on his 75th birthday)

    Uspekhi Mat. Nauk, 69:3(417) (2014),  186–190
  25. Valentin Yakovlevich Golodets (on his seventieth birthday)

    Zh. Mat. Fiz. Anal. Geom., 3:2 (2007),  277–279
  26. Valentin Yakovlevich Golodets (on his 70th birthday)

    Uspekhi Mat. Nauk, 62:6(378) (2007),  191–192


© Steklov Math. Inst. of RAS, 2025