RUS  ENG
Full version
PEOPLE

Iokhvidov Iosif Semenovich

Publications in Math-Net.Ru

  1. Linear operators in spaces with an indefinite metric and their applications

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 17 (1979),  113–205
  2. On extensions of rectangular Hankel matrices

    Dokl. Akad. Nauk SSSR, 233:3 (1977),  285–288
  3. On the $(r,k)$-characteristics of rectangular Hankel matrices

    Dokl. Akad. Nauk SSSR, 233:2 (1977),  276–279
  4. Linear operators in Hilbert spaces with $G$-metric

    Uspekhi Mat. Nauk, 26:4(160) (1971),  43–92
  5. The $(r,k)$-characteristic of a Hankel matrix

    Uspekhi Mat. Nauk, 24:4(148) (1969),  199–200
  6. On Hankel matrices and forms

    Mat. Sb. (N.S.), 80(122):2(10) (1969),  241–252
  7. On the rank of Toeplitz matrices

    Mat. Sb. (N.S.), 76(118):1 (1968),  26–38
  8. Spectral trajectories generated by unitary extensions of isometric shift operators in a finite-dimensional space $\Pi_1$

    Dokl. Akad. Nauk SSSR, 173:5 (1967),  1002–1005
  9. Unitary extensions of isometric operators in the Pontrjagin space $\Pi_1$ and continuations in the $\mathfrak{P}_1$ class of finite sequences of the class $\mathfrak{P}_{1;n}$

    Dokl. Akad. Nauk SSSR, 173:4 (1967),  758–761
  10. Signatures of Toeplitz forms

    Dokl. Akad. Nauk SSSR, 169:6 (1966),  1258–1261
  11. $J$-nondilating operators in a Banach space

    Dokl. Akad. Nauk SSSR, 169:3 (1966),  519–522
  12. Banach spaces with a $J$-metric. $J$-nonnegative operators

    Dokl. Akad. Nauk SSSR, 169:2 (1966),  259–261
  13. Extension of Toeplitz forms and certain properties of Toeplitz matrices

    Uspekhi Mat. Nauk, 21:2(128) (1966),  229–231
  14. $G$-isometric and $J$-semiunitary operators in Hilbert space

    Uspekhi Mat. Nauk, 20:3(123) (1965),  175–181
  15. On a lemma of Ky Fan generalizing the fixed-point principle of A. N. Tihonov

    Dokl. Akad. Nauk SSSR, 159:3 (1964),  501–504
  16. Operators with completely continuous iterations

    Dokl. Akad. Nauk SSSR, 153:2 (1963),  258–261
  17. Singular linear manifolds in spaces with an arbitrary Hermitian bilinear metric

    Uspekhi Mat. Nauk, 17:4(106) (1962),  127–133
  18. The geometry of infinite-dimensional spaces with a bilinear metric

    Uspekhi Mat. Nauk, 17:4(106) (1962),  3–56
  19. Regular and projectively complete linear manifolds in spaces with a general Hermitian bilinear metric

    Dokl. Akad. Nauk SSSR, 139:4 (1961),  791–794
  20. Boundedness of $J$-isometric operators

    Uspekhi Mat. Nauk, 16:4(100) (1961),  167–170
  21. Spectral theory of operators in spaces with indefinite metric. II

    Tr. Mosk. Mat. Obs., 8 (1959),  413–496
  22. Spectral theory of operators in space with indefinite metric. I

    Tr. Mosk. Mat. Obs., 5 (1956),  367–432

  23. Mark Grigor'evich Krein (on his seventieth birthday)

    Uspekhi Mat. Nauk, 33:3(201) (1978),  197–203
  24. Vladimir Ivanovich Sobolev (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 29:1(175) (1974),  247–250
  25. Letter to the editor

    Tr. Mosk. Mat. Obs., 15 (1966),  452–454
  26. Inter-College Conference on Functional Analysis and on Application of It

    Uspekhi Mat. Nauk, 14:3(87) (1959),  221–226
  27. Remark to the article “Spectral theory of operators in space with indefinite metric. I” (Trudy Mosk. Mat. O-va 5 (1956))

    Tr. Mosk. Mat. Obs., 6 (1957),  486


© Steklov Math. Inst. of RAS, 2024