RUS  ENG
Full version
PEOPLE

Nogin Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. $L_p-L_q$-estimates for potential-type operators with oscillating kernels

    Vladikavkaz. Mat. Zh., 20:4 (2018),  35–42
  2. $L_p-L_q$-estimates for generalized Riss potentials with oscillating

    Vladikavkaz. Mat. Zh., 19:2 (2017),  3–10
  3. Complex powers of a differential operator related to the Schrödinger operator

    Vladikavkaz. Mat. Zh., 19:1 (2017),  18–25
  4. On a certain Fourier multiplier

    Vladikavkaz. Mat. Zh., 17:1 (2015),  14–20
  5. Estimates for some convolution operators with singularities in their kernels on a sphere and their applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1,  3–16
  6. Estimates for some potential type operators whose kernels have singularities on spheres

    Vladikavkaz. Mat. Zh., 16:1 (2014),  12–23
  7. Inversion and description of the ranges of potentials with singularities of their kernels on a sphere

    Vladikavkaz. Mat. Zh., 14:4 (2012),  10–18
  8. $L^1-H^1$ bounds for a generalized Strichartz potential

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  10–18
  9. Inversion and characterization of some potentials with the densities in $L^p$ in the non-elliptic case

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(25) (2011),  43–49
  10. Estimates for some convolution operators with singularities of their kernels on spheres

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  17–23
  11. Estimates for some potential-type operators with oscillating symbols

    Vladikavkaz. Mat. Zh., 12:3 (2010),  21–29
  12. Complex powers of degenerating differential operators connected with the Klein–Gordon–Fock operator

    Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 9,  3–12
  13. Estimates for twisted convolution operators with singularities of kernels on a sphere and at the origin

    Differ. Uravn., 42:5 (2006),  674–683
  14. $L_p\to L_q$-estimates for a twisted convolution operator with a kernel that has singularities on a sphere and at the origin

    Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 2,  72–75
  15. Inversion of potential-type operators with symbols degenerate on hyperboloids and paraboloids

    Mat. Zametki, 80:6 (2006),  814–824
  16. Description of the range of an operator of potential type with an oscillating kernel

    Vladikavkaz. Mat. Zh., 7:2 (2005),  17–25
  17. Complex Powers of the Telegraph Operator and Close Operators in $L_p$ Spaces

    Differ. Uravn., 39:3 (2003),  402–409
  18. $L_p\to L_q$-estimates for some potential-type operators with oscillating symbols and their application

    Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 11,  79–82
  19. Complex Powers of Some Second-Order Differential Operators with Constant Complex Coefficients in $L_p$-Spaces

    Differ. Uravn., 37:8 (2001),  1115–1117
  20. Inversion of some Riesz potentials with oscillating characteristics in the nonelliptic case

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 10,  77–80
  21. Characterization of functions in anisotropic spaces of complex order

    Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 5,  24–30
  22. Complex powers of second-order hypoelliptic operators with constant coefficients in $L_p$-spaces

    Differ. Uravn., 33:8 (1997),  1134–1135
  23. Description of functions in anisotropic spaces of complex order, and its application

    Dokl. Akad. Nauk, 351:1 (1996),  13–15
  24. Fractional powers of the operator $-|x|^2\Delta$ in $L_p$-spaces

    Differ. Uravn., 32:2 (1996),  275–276
  25. Inversion of some integral operators with degenerate and oscillating symbols

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 10,  36–39
  26. Fractional powers of second-order differential operators with constant coefficients in $L_p$-spaces

    Dokl. Akad. Nauk, 341:3 (1995),  295–298
  27. Fractional powers of the Klein–Gordon–Fock operator in $L_p$-spaces

    Dokl. Akad. Nauk, 341:2 (1995),  166–168
  28. Fractional powers of some differential operators that commute with dilations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 4,  79–83
  29. Inversion and description of hyperbolic potentials with $L_p$-densities

    Dokl. Akad. Nauk, 329:5 (1993),  550–552
  30. Generalized hypersingular integrals and their application to the inversion of operators of potential type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 6,  65–68
  31. Inversion and description of generalized Riesz potential with quadratic characteristics

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 2,  3–11
  32. An approximate approach to the inversion of generalized Riesz potentials

    Dokl. Akad. Nauk, 324:4 (1992),  738–741
  33. Convergence in $L_p(R^n)$ of hypersingular integrals with nonstandard truncation

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  71–74
  34. Estimates for potentials with oscillating kernels that are connected with the Helmholtz equation

    Differ. Uravn., 26:9 (1990),  1608–1613
  35. Characterization of functions in anisotropic classes of Liouville type

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7,  63–66
  36. Riesz derivatives with nonstandard truncation and their application to the inversion and description of potentials that commute with dilations

    Dokl. Akad. Nauk SSSR, 300:2 (1988),  277–280
  37. Convergence of hypersingular integrals

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3,  80–82
  38. Inversion of parabolic potentials with $L_p$-densities

    Mat. Zametki, 39:6 (1986),  831–840
  39. The weighted spaces $L^\alpha_{p,r}(\rho_1,\rho_2)$ of differentiable functions of fractional smoothness

    Mat. Sb. (N.S.), 131(173):2(10) (1986),  213–224
  40. Inversion and description of parabolic potentials with $L_p$-densities

    Dokl. Akad. Nauk SSSR, 284:3 (1985),  535–538
  41. Inversion of Bessel potentials by means of hypersingular integrals

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 3,  57–65
  42. Inversion and description of Riesz potentials with densities from weighted $L_p$-spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 1,  70–72
  43. Inversion of Bessel potentials

    Differ. Uravn., 18:8 (1982),  1407–1411
  44. Weighted spaces of a type of Riesz potentials

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 6,  77–80
  45. Inversion of the generalized Riesz potentials with the symbols that degenerate linearly on a hyperplane

    Mat. Zametki, 32:3 (1982),  315–323
  46. On the simultaneous approximation of functions and their Riesz derivatives

    Dokl. Akad. Nauk SSSR, 261:3 (1981),  548–550


© Steklov Math. Inst. of RAS, 2025