|
|
Publications in Math-Net.Ru
-
Investment optimization in the Heston model
Zap. Nauchn. Sem. POMI, 526 (2023), 29–51
-
Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations
Zap. Nauchn. Sem. POMI, 515 (2022), 39–71
-
Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws
Mat. Zametki, 109:3 (2021), 338–351
-
Systems of nonlinear backward and forward Kolmogorov equations:
generalized solutions
Teor. Veroyatnost. i Primenen., 66:1 (2021), 20–54
-
Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations
Zap. Nauchn. Sem. POMI, 505 (2021), 38–61
-
Chemotaxis stochastic model for two populations
Zap. Nauchn. Sem. POMI, 495 (2020), 37–63
-
Markov processes and magneto-hydrodynamic systems
Zap. Nauchn. Sem. POMI, 486 (2019), 7–34
-
Stochastic models of chemotaxis processes
Zap. Nauchn. Sem. POMI, 474 (2018), 7–27
-
Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition
Mat. Zametki, 101:3 (2017), 346–358
-
Stochastic interpretation of the MHD-Burgers system
Zap. Nauchn. Sem. POMI, 466 (2017), 7–29
-
Stochastic interpretation of quasilinear parabolic systems with cross-diffusion
Teor. Veroyatnost. i Primenen., 61:2 (2016), 268–299
-
Probabilistic models of parabolic conservation and balance laws and systems with switching regimes
Zap. Nauchn. Sem. POMI, 454 (2016), 5–42
-
Probabilistic representations and numerical algorithms to construct classical and viscosity solutions of the Cauchy problem for systems of quasilinear parabolic equations
Zap. Nauchn. Sem. POMI, 442 (2015), 18–47
-
A stochastic model for the Lotka–Volterra system with cross-diffusion
Zap. Nauchn. Sem. POMI, 431 (2014), 9–36
-
Forward-backward stochastic differential equations associated with systems of quasilinear parabolic equations and comparison theorems
Zap. Nauchn. Sem. POMI, 412 (2013), 15–46
-
Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations
Zap. Nauchn. Sem. POMI, 396 (2011), 31–66
-
The Cauchy Problem for the Wave Equation with Lévy Laplacian
Mat. Zametki, 87:6 (2010), 803–813
-
Probabilistic approach to a free boundary problem and American option procing
Zap. Nauchn. Sem. POMI, 384 (2010), 40–77
-
Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics
Zap. Nauchn. Sem. POMI, 368 (2009), 20–52
-
Arbitrage-free option prices on global markets
Zap. Nauchn. Sem. POMI, 361 (2008), 5–28
-
Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations
Zap. Nauchn. Sem. POMI, 351 (2007), 5–37
-
A probabilistic approach to a solution of nonlinear parabolic
equations
Teor. Veroyatnost. i Primenen., 49:4 (2004), 625–652
-
Generalized solutions of nonlinear parabolic systems and vanishing viscosity method
Zap. Nauchn. Sem. POMI, 311 (2004), 7–39
-
Characterization of Elliptic Distributions
Zap. Nauchn. Sem. POMI, 294 (2002), 19–28
-
Nonlinear equations in diffusion theory
Zap. Nauchn. Sem. POMI, 278 (2001), 15–35
-
Smooth diffusion measures and their transformations
Zap. Nauchn. Sem. POMI, 260 (1999), 31–49
-
Probabilistic representation of solutions to boundaryvalue problems for hydrodynamics equations
Zap. Nauchn. Sem. POMI, 249 (1997), 77–101
-
Parabolic equations in sections of principal bundles
Algebra i Analiz, 2:5 (1990), 80–100
-
Itô equations and differential geometry
Uspekhi Mat. Nauk, 37:3(225) (1982), 95–142
-
On a class of stochastic equations with partial derivatives
Teor. Veroyatnost. i Primenen., 27:3 (1982), 551–559
-
Markov processes connected with nonlinear parabolic systems
Dokl. Akad. Nauk SSSR, 250:3 (1980), 521–524
-
An investigation of the Oauchy problem for a non-linear parabolic system by means of operator-valued multiplicative functionals of Markov random processes
Zap. Nauchn. Sem. LOMI, 96 (1980), 23–29
-
On the first boundary value problem for a system of quasilinear elliptic equations
Zap. Nauchn. Sem. LOMI, 96 (1980), 13–22
-
Study of the Cauchy problem for quasilinear parabolic systems using Markov random processes
Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12, 6–17
-
Diffusion processes in smooth Banach spaces and manifolds. I
Tr. Mosk. Mat. Obs., 37 (1978), 107–141
-
О стохастических моделях и методе пересчета толубинского в линейной теории переноса
TVT, 11:5 (1973), 1017–1024
-
Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics
Uspekhi Mat. Nauk, 33:5(203) (1978), 209–217
© , 2024