RUS  ENG
Full version
PEOPLE

Belopol'skaya Yana Isaevna

Publications in Math-Net.Ru

  1. Investment optimization in the Heston model

    Zap. Nauchn. Sem. POMI, 526 (2023),  29–51
  2. Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations

    Zap. Nauchn. Sem. POMI, 515 (2022),  39–71
  3. Probabilistic Interpretation of the Vanishing Viscosity Method for Systems of Conservation and Balance Laws

    Mat. Zametki, 109:3 (2021),  338–351
  4. Systems of nonlinear backward and forward Kolmogorov equations: generalized solutions

    Teor. Veroyatnost. i Primenen., 66:1 (2021),  20–54
  5. Stochastic model of the Cauchy–Neumann problem for nonlinear parabolic equations

    Zap. Nauchn. Sem. POMI, 505 (2021),  38–61
  6. Chemotaxis stochastic model for two populations

    Zap. Nauchn. Sem. POMI, 495 (2020),  37–63
  7. Markov processes and magneto-hydrodynamic systems

    Zap. Nauchn. Sem. POMI, 486 (2019),  7–34
  8. Stochastic models of chemotaxis processes

    Zap. Nauchn. Sem. POMI, 474 (2018),  7–27
  9. Probabilistic Models of the Dynamics of the Growth of Cells under Contact Inhibition

    Mat. Zametki, 101:3 (2017),  346–358
  10. Stochastic interpretation of the MHD-Burgers system

    Zap. Nauchn. Sem. POMI, 466 (2017),  7–29
  11. Stochastic interpretation of quasilinear parabolic systems with cross-diffusion

    Teor. Veroyatnost. i Primenen., 61:2 (2016),  268–299
  12. Probabilistic models of parabolic conservation and balance laws and systems with switching regimes

    Zap. Nauchn. Sem. POMI, 454 (2016),  5–42
  13. Probabilistic representations and numerical algorithms to construct classical and viscosity solutions of the Cauchy problem for systems of quasilinear parabolic equations

    Zap. Nauchn. Sem. POMI, 442 (2015),  18–47
  14. A stochastic model for the Lotka–Volterra system with cross-diffusion

    Zap. Nauchn. Sem. POMI, 431 (2014),  9–36
  15. Forward-backward stochastic differential equations associated with systems of quasilinear parabolic equations and comparison theorems

    Zap. Nauchn. Sem. POMI, 412 (2013),  15–46
  16. Probabilistic approach to viscosity solutions of the Cauchy problem for systems of fully nonlinear parabolic equations

    Zap. Nauchn. Sem. POMI, 396 (2011),  31–66
  17. The Cauchy Problem for the Wave Equation with Lévy Laplacian

    Mat. Zametki, 87:6 (2010),  803–813
  18. Probabilistic approach to a free boundary problem and American option procing

    Zap. Nauchn. Sem. POMI, 384 (2010),  40–77
  19. Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics

    Zap. Nauchn. Sem. POMI, 368 (2009),  20–52
  20. Arbitrage-free option prices on global markets

    Zap. Nauchn. Sem. POMI, 361 (2008),  5–28
  21. Jump processes in $Q_p$ associated with nonlinear pseudo-differential equations

    Zap. Nauchn. Sem. POMI, 351 (2007),  5–37
  22. A probabilistic approach to a solution of nonlinear parabolic equations

    Teor. Veroyatnost. i Primenen., 49:4 (2004),  625–652
  23. Generalized solutions of nonlinear parabolic systems and vanishing viscosity method

    Zap. Nauchn. Sem. POMI, 311 (2004),  7–39
  24. Characterization of Elliptic Distributions

    Zap. Nauchn. Sem. POMI, 294 (2002),  19–28
  25. Nonlinear equations in diffusion theory

    Zap. Nauchn. Sem. POMI, 278 (2001),  15–35
  26. Smooth diffusion measures and their transformations

    Zap. Nauchn. Sem. POMI, 260 (1999),  31–49
  27. Probabilistic representation of solutions to boundaryvalue problems for hydrodynamics equations

    Zap. Nauchn. Sem. POMI, 249 (1997),  77–101
  28. Parabolic equations in sections of principal bundles

    Algebra i Analiz, 2:5 (1990),  80–100
  29. Itô equations and differential geometry

    Uspekhi Mat. Nauk, 37:3(225) (1982),  95–142
  30. On a class of stochastic equations with partial derivatives

    Teor. Veroyatnost. i Primenen., 27:3 (1982),  551–559
  31. Markov processes connected with nonlinear parabolic systems

    Dokl. Akad. Nauk SSSR, 250:3 (1980),  521–524
  32. An investigation of the Oauchy problem for a non-linear parabolic system by means of operator-valued multiplicative functionals of Markov random processes

    Zap. Nauchn. Sem. LOMI, 96 (1980),  23–29
  33. On the first boundary value problem for a system of quasilinear elliptic equations

    Zap. Nauchn. Sem. LOMI, 96 (1980),  13–22
  34. Study of the Cauchy problem for quasilinear parabolic systems using Markov random processes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1978, no. 12,  6–17
  35. Diffusion processes in smooth Banach spaces and manifolds. I

    Tr. Mosk. Mat. Obs., 37 (1978),  107–141
  36. О стохастических моделях и методе пересчета толубинского в линейной теории переноса

    TVT, 11:5 (1973),  1017–1024

  37. Sessions of the Petrovskii Seminar on differential equations and mathematical problems of physics

    Uspekhi Mat. Nauk, 33:5(203) (1978),  209–217


© Steklov Math. Inst. of RAS, 2024