|
|
Publications in Math-Net.Ru
-
Asymptotically Optimal Sequential Hypothesis Testing
Probl. Peredachi Inf., 36:4 (2000), 98–112
-
Sequential Search for Significant Variables of an Unknown Function
Probl. Peredachi Inf., 33:4 (1997), 88–107
-
On asymptotic properties of estimates under sequential design
Trudy Mat. Inst. Steklov., 202 (1993), 190–208
-
Some Studies on Mathematical Statistics Which Are Related to the Department of Probability Theory at the MSU
Teor. Veroyatnost. i Primenen., 34:1 (1989), 223–228
-
Lower bounds for the mean length of a sequentially planned experiment
Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 11, 19–41
-
A lower bound for the average size of a sequentially controlled sample
Uspekhi Mat. Nauk, 37:2(224) (1982), 209–210
-
Planning of screening experiments for a nonsymmetric response function
Mat. Zametki, 27:1 (1980), 109–127
-
Designing screening experiments for a nonsymmetric response function
Dokl. Akad. Nauk SSSR, 244:1 (1979), 42–46
-
The separating property of random matrices
Mat. Zametki, 23:1 (1978), 155–167
-
On weighted polynomial regression designs with minimum average veriance
Teor. Veroyatnost. i Primenen., 16:4 (1971), 734–738
-
Poincaré's boundary value problem
Tr. Mosk. Mat. Obs., 20 (1969), 173–204
-
Oblique derivative problem in three-dimensional space
Dokl. Akad. Nauk SSSR, 172:2 (1967), 283–286
-
Brownian motion with reflection and the problem of the inclined derivative
Dokl. Akad. Nauk SSSR, 156:6 (1964), 1285–1287
-
Random walk on groups with a finite number of generators
Dokl. Akad. Nauk SSSR, 137:5 (1961), 1042–1045
-
Book review: «Foundation of Optimum Experimental Design» A. Pazman
Teor. Veroyatnost. i Primenen., 33:1 (1988), 215–216
-
Ñ. Daniev, F. S. Wood «Fitting equations to data. Computer analysis of multifactor data» (book review)
Teor. Veroyatnost. i Primenen., 26:2 (1981), 441–442
-
Ò. À. Â. Snijders «Asymptotic optimality theory for testing problems with restricted alternatives» (book review)
Teor. Veroyatnost. i Primenen., 26:2 (1981), 440–441
-
Addendum: minimax designs for testing the degree of a polynomial
Teor. Veroyatnost. i Primenen., 18:4 (1973), 887
© , 2024