RUS  ENG
Full version
PEOPLE

Malyutov Mikhail Borisovich

Publications in Math-Net.Ru

  1. Asymptotically Optimal Sequential Hypothesis Testing

    Probl. Peredachi Inf., 36:4 (2000),  98–112
  2. Sequential Search for Significant Variables of an Unknown Function

    Probl. Peredachi Inf., 33:4 (1997),  88–107
  3. On asymptotic properties of estimates under sequential design

    Trudy Mat. Inst. Steklov., 202 (1993),  190–208
  4. Some Studies on Mathematical Statistics Which Are Related to the Department of Probability Theory at the MSU

    Teor. Veroyatnost. i Primenen., 34:1 (1989),  223–228
  5. Lower bounds for the mean length of a sequentially planned experiment

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 11,  19–41
  6. A lower bound for the average size of a sequentially controlled sample

    Uspekhi Mat. Nauk, 37:2(224) (1982),  209–210
  7. Planning of screening experiments for a nonsymmetric response function

    Mat. Zametki, 27:1 (1980),  109–127
  8. Designing screening experiments for a nonsymmetric response function

    Dokl. Akad. Nauk SSSR, 244:1 (1979),  42–46
  9. The separating property of random matrices

    Mat. Zametki, 23:1 (1978),  155–167
  10. On weighted polynomial regression designs with minimum average veriance

    Teor. Veroyatnost. i Primenen., 16:4 (1971),  734–738
  11. Poincaré's boundary value problem

    Tr. Mosk. Mat. Obs., 20 (1969),  173–204
  12. Oblique derivative problem in three-dimensional space

    Dokl. Akad. Nauk SSSR, 172:2 (1967),  283–286
  13. Brownian motion with reflection and the problem of the inclined derivative

    Dokl. Akad. Nauk SSSR, 156:6 (1964),  1285–1287
  14. Random walk on groups with a finite number of generators

    Dokl. Akad. Nauk SSSR, 137:5 (1961),  1042–1045

  15. Book review: «Foundation of Optimum Experimental Design» A. Pazman

    Teor. Veroyatnost. i Primenen., 33:1 (1988),  215–216
  16. Ñ. Daniev, F. S. Wood «Fitting equations to data. Computer analysis of multifactor data» (book review)

    Teor. Veroyatnost. i Primenen., 26:2 (1981),  441–442
  17. Ò. À. Â. Snijders «Asymptotic optimality theory for testing problems with restricted alternatives» (book review)

    Teor. Veroyatnost. i Primenen., 26:2 (1981),  440–441
  18. Addendum: minimax designs for testing the degree of a polynomial

    Teor. Veroyatnost. i Primenen., 18:4 (1973),  887


© Steklov Math. Inst. of RAS, 2024