RUS  ENG
Full version
PEOPLE

Venkov Aleksei Borisovich

Publications in Math-Net.Ru

  1. Congruence properties of induced representations and their applications

    Algebra i Analiz, 26:4 (2014),  129–147
  2. Mayer's transfer operator approach to Selberg's zeta function

    Algebra i Analiz, 24:4 (2012),  1–33
  3. On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians

    Algebra i Analiz, 17:1 (2005),  5–52
  4. Approximation of Maass forms by analytic modular forms

    Algebra i Analiz, 6:6 (1994),  51–64
  5. The Zagier formula with the Eisenstein–Maass series at odd integer points, and the generalized Selberg zeta function

    Algebra i Analiz, 6:3 (1994),  84–93
  6. The Selberg trace formula, Ramanujan graphs and some problems in mathematical physics

    Algebra i Analiz, 5:3 (1993),  1–76
  7. On a multidimensional variant of the Roelcke–Selberg conjecture

    Algebra i Analiz, 4:3 (1992),  145–158
  8. Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$

    Zap. Nauchn. Sem. POMI, 200 (1992),  51–61
  9. Selberg's trace formula for an automorphic Schrodinger operator

    Funktsional. Anal. i Prilozhen., 25:2 (1991),  26–37
  10. Examples of effective solution of the Riemann-Hilbert problem on renewal of a differential equation with monodromy group in the framework of the theory of automorphic functions

    Zap. Nauchn. Sem. LOMI, 162 (1987),  5–42
  11. A remark on the discrete spectrum of the automorphic Laplacian for a generalized cycloidal subgroup of the general Fuchsian group

    Zap. Nauchn. Sem. LOMI, 160 (1987),  31–36
  12. The automorphic scattering matrix for the Hecke group $\Gamma(2\cos\pi/q)$

    Trudy Mat. Inst. Steklov., 163 (1984),  32–36
  13. Construction of “Hauptfunktion”, solution of the equations of Schwarz and Puchs for a surface of zero genus by the methods of spectral theory of automorphic functions

    Zap. Nauchn. Sem. LOMI, 133 (1984),  51–62
  14. On accessory coefficients in the Schwarz equation

    Dokl. Akad. Nauk SSSR, 270:5 (1983),  1042–1045
  15. Exact formulas for the accessory coefficients in the Schwarz equation

    Funktsional. Anal. i Prilozhen., 17:3 (1983),  1–8
  16. On accessory coefficients of second order Fuchsian equation with real singular points

    Zap. Nauchn. Sem. LOMI, 129 (1983),  17–29
  17. On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups

    Izv. Akad. Nauk SSSR Ser. Mat., 46:6 (1982),  1150–1158
  18. Automorphic functions and Kummer's problem

    Uspekhi Mat. Nauk, 37:3(225) (1982),  143–165
  19. On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups

    Dokl. Akad. Nauk SSSR, 259:3 (1981),  523–526
  20. On Dirichlet series that are associated with the defining equations and continued fractions in the theory of automorphic functions

    Trudy Mat. Inst. Steklov., 158 (1981),  31–44
  21. Spectral theory of automorphic functions

    Trudy Mat. Inst. Steklov., 153 (1981),  3–171
  22. Automorphic scattering matrix for the Hecke group $\Gamma[2\cos(\pi/q)]$

    Zap. Nauchn. Sem. LOMI, 109 (1981),  34–40
  23. Zeros of $\zeta$- and $\mathrm{L}$-functions of imaginary quadratic fields and the eigenvalues of the $\mathrm{PSL}(2,\mathbf{Z})$-automorphic Laplacian

    Dokl. Akad. Nauk SSSR, 250:3 (1980),  528–531
  24. The Artin–Takagi formula for Selberg's zeta-function and the Roelcke conjecture

    Dokl. Akad. Nauk SSSR, 247:3 (1979),  540–543
  25. Weyl's formula in the spectral theory of automorphic functions

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  67–68
  26. Spectral theory of automorphic functions, the Selberg zeta-function, and some problems of analytic number theory and mathematical physics

    Uspekhi Mat. Nauk, 34:3(207) (1979),  69–135
  27. On the remainder term in the Weyl–Selberg asymptotic formula

    Zap. Nauchn. Sem. LOMI, 91 (1979),  5–24
  28. The asymptotic distribution of the norms of hyperbolic classes and spectral characteristics of cusp forms of weight zero for a Fuchsian group

    Dokl. Akad. Nauk SSSR, 243:6 (1978),  1373–1376
  29. Selberg's trace formula and non-euclidean vibrations of an infinite membrane

    Dokl. Akad. Nauk SSSR, 240:5 (1978),  1021–1024
  30. On the space of cusp functions for a Fuchsian group of the first kind with nontrivial commensurator

    Dokl. Akad. Nauk SSSR, 239:3 (1978),  511–514
  31. Selberg's trace formula for the Hecke operator generated by an involution, and the eigenvalues of the Laplace–Beltrami operator on the fundamental domain of the modular group $PSL(2,\mathbf Z)$

    Izv. Akad. Nauk SSSR Ser. Mat., 42:3 (1978),  484–499
  32. A formula for the Chebyshev PSI function

    Mat. Zametki, 23:4 (1978),  497–503
  33. On the space of cusp forms for certain Fuchsian groups generated by reflections

    Dokl. Akad. Nauk SSSR, 236:3 (1977),  525–527
  34. On an asymptotic formula connected with the number of eigenvalues corresponding to odd eigenfunctions of the Laplace–Beltrami operator on a fundamental region of the modular group $\mathrm{PSL}(2,\mathbf{Z})$

    Dokl. Akad. Nauk SSSR, 233:6 (1977),  1021–1023
  35. On Selberg's trace formula for $SL(3,\mathrm{Z})$

    Dokl. Akad. Nauk SSSR, 228:2 (1976),  273–276
  36. The Selberg trace formula for $SL(3,\mathbf Z)$

    Zap. Nauchn. Sem. LOMI, 63 (1976),  8–66
  37. A series of a discrete group and its application to the Dirichlet series associated with automorphic forms

    Zap. Nauchn. Sem. LOMI, 63 (1976),  3–7
  38. Expansion in automorphic eigenfunctions of the Laplace–Beltrami operator in classical symmetric spaces of rank one, and Selberg's trace formula

    Trudy Mat. Inst. Steklov., 125 (1973),  6–55
  39. A nonarithmetic derivation of the Selberg trace formula

    Zap. Nauchn. Sem. LOMI, 37 (1973),  5–42
  40. Expansion in automorphic eigenfunctions of the Laplace operator and the Selberg trace formula in the space $SO_0(n,1)/SO(n)$

    Dokl. Akad. Nauk SSSR, 200:2 (1971),  266–268


© Steklov Math. Inst. of RAS, 2025