RUS  ENG
Full version
PEOPLE

Belolipetskii Aleksandr Alekseevich

Publications in Math-Net.Ru

  1. Solution of Tikhonov's motion-separation problem using the modified Newton–Kantorovich theorem

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  237–243
  2. Modified Kantorovich theorem and asymptotic approximations of solutions to singularly perturbed systems of ordinary differential equations

    Zh. Vychisl. Mat. Mat. Fiz., 56:11 (2016),  1889–1901
  3. On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions

    Zh. Vychisl. Mat. Mat. Fiz., 54:1 (2014),  80–88
  4. Singularities of the Bellman function in a linear time-optimality problem

    Dokl. Akad. Nauk SSSR, 291:3 (1986),  528–530
  5. Asymptotic estimates for solutions of the time-optimality problem near breakaway points of an isochronous surface

    Zh. Vychisl. Mat. Mat. Fiz., 26:4 (1986),  521–535
  6. Construction of fundamental solutions of an abstract nonlinear parabolic equation in a neighborhood of a bifurcation point

    Mat. Sb. (N.S.), 128(170):3(11) (1985),  306–320
  7. A class of solutions of an abstract nonlinear parabolic equation near a bifurcation point

    Dokl. Akad. Nauk SSSR, 279:4 (1984),  777–780
  8. Asymptotic form of the solutions of ordinary differential equations with turning points

    Zh. Vychisl. Mat. Mat. Fiz., 24:6 (1984),  850–863
  9. On asymptotic properties of solutions of a mixed problem for a nonlinear heat equation

    Dokl. Akad. Nauk SSSR, 269:6 (1983),  1296–1299
  10. Perturbed linear optimal control problems with phase constraints

    Zh. Vychisl. Mat. Mat. Fiz., 18:1 (1978),  35–48
  11. A numerical method for the solution of a linear time-optimality problem by reducing it to a Cauchy problem

    Zh. Vychisl. Mat. Mat. Fiz., 17:6 (1977),  1380–1386
  12. Sensitivity of linear time-optimalities to weak phase constraints

    Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975),  1113–1125
  13. The linear time optimal problem with a small parameter

    Zh. Vychisl. Mat. Mat. Fiz., 14:5 (1974),  1131–1137
  14. Differentiability of the isochronous surfaces in a linear time-optimal problem

    Zh. Vychisl. Mat. Mat. Fiz., 13:5 (1973),  1319–1323
  15. An elementary proof of the theorem on the convex hull of the set of cycle matrices

    Zh. Vychisl. Mat. Mat. Fiz., 11:1 (1971),  258–260


© Steklov Math. Inst. of RAS, 2025