RUS  ENG
Full version
PEOPLE

Generalov Aleksandr Ivanovich

Publications in Math-Net.Ru

  1. $BV$-structure on Hochschild cohomology for exceptional local algebras of quaternion type. The case of an even parameter

    Algebra i Analiz, 35:4 (2023),  79–110
  2. Hochschild cohomology for algebras of dihedral type. X. Exceptional local algebras

    Zap. Nauchn. Sem. POMI, 522 (2023),  60–83
  3. Hochschild cohomology of algebras of dihedral type. IX. The Hochschild cohomology algebra for the family $D(3\mathcal K)$ in characteristic different from $2$

    Zap. Nauchn. Sem. POMI, 513 (2022),  30–56
  4. On an injective structure in a homotopy category

    Zap. Nauchn. Sem. POMI, 513 (2022),  22–29
  5. Hochschild cohomology of algebras of semidihedral type, X. Cohomology algebra for exceptional local algebras

    Zap. Nauchn. Sem. POMI, 500 (2021),  51–111
  6. A note on generalized semicommutative rings

    Zap. Nauchn. Sem. POMI, 492 (2020),  69–74
  7. Algebraic Mayer–Vietoris theorem over preabelian categories

    Zap. Nauchn. Sem. POMI, 492 (2020),  61–68
  8. On embedings of the free group into the group of infinite unitriangular matrices

    Zap. Nauchn. Sem. POMI, 484 (2019),  55–58
  9. Cohomology of algebras of dihedral type. V

    Zap. Nauchn. Sem. POMI, 484 (2019),  45–54
  10. Hochschild cohomology of algebras of quaternion type, IV: cohomology algebra for exceptional local algebras

    Zap. Nauchn. Sem. POMI, 478 (2019),  32–77
  11. Hochschild cohomology of algebras of semidihedral type, IX: exceptional local algebras

    Zap. Nauchn. Sem. POMI, 478 (2019),  17–31
  12. Hochschild cohomology of algebras of dihedral type. VIII. The Hochschild cohomology algebra for the family $D(2\mathcal B)(k,s,0)$ in characteristic $2$

    Zap. Nauchn. Sem. POMI, 470 (2018),  50–87
  13. Hochschild cohomology for algebras of dihedral type, VII. The family $D(3\mathcal R)$

    Zap. Nauchn. Sem. POMI, 460 (2017),  53–81
  14. Hochschild cohomology for algebras of semidihedral type. VIII. The family $SD(2\mathcal B)_1$

    Zap. Nauchn. Sem. POMI, 460 (2017),  35–52
  15. On a strange homotopy category

    Zap. Nauchn. Sem. POMI, 455 (2017),  33–41
  16. On derived equivalence of algebras of semidihedral groups with two simple modules

    Zap. Nauchn. Sem. POMI, 452 (2016),  70–85
  17. Hochschild cohomology for algebras of semidihedral type. VII. Algebras with a small parameter

    Zap. Nauchn. Sem. POMI, 452 (2016),  52–69
  18. Hochschild cohomology for algebras of semidihedral type. VI. The family $SD(2\mathcal B)_2$ in characteristic different from 2

    Zap. Nauchn. Sem. POMI, 443 (2016),  61–77
  19. Hochschild cohomology for algebras of dihedral type. VI. The family $D(2\mathcal B)(k,s,1)$

    Algebra i Analiz, 27:6 (2015),  89–116
  20. Hochschild cohomology for algebras of semidihedral type. V. The family $SD(3\mathcal K)$

    Zap. Nauchn. Sem. POMI, 435 (2015),  5–32
  21. The Hochschild cohomology ring for modular group

    Algebra i Analiz, 26:1 (2014),  3–39
  22. Hochschild cohomology for algebras of dihedral type. V. The family $D(3\mathcal K)$ in characteristic different from 2

    Zap. Nauchn. Sem. POMI, 430 (2014),  74–102
  23. A note on localization of pretriangulated categories

    Zap. Nauchn. Sem. POMI, 430 (2014),  67–73
  24. Hochschild cohomology for algebras of dihedral type. IV. The family $D(2\mathcal B)(k,s,0)$

    Zap. Nauchn. Sem. POMI, 423 (2014),  67–104
  25. Hochschild cohomology for algebras of semidihedral type. IV. The cohomology algebra for the family $SD(2\mathcal B)_2(k,t,c)$ in the case $c=0$

    Zap. Nauchn. Sem. POMI, 413 (2013),  45–92
  26. Hochschild cohomology for algebras of semidihedral type. III. The family $SD(2\mathcal B)_2$ in characteristic 2

    Zap. Nauchn. Sem. POMI, 400 (2012),  133–157
  27. Cohomology of algebras of semidihedral type. VIII

    Zap. Nauchn. Sem. POMI, 394 (2011),  194–208
  28. Hochschild cohomology for the integer group ring of the semidihedral group

    Zap. Nauchn. Sem. POMI, 388 (2011),  119–151
  29. Hochschild cohomology for algebras of semidihedral type, II. Local algebras

    Zap. Nauchn. Sem. POMI, 386 (2011),  144–202
  30. Hochschild cohomology for self-injective algebras of tree class $D_n$. III

    Zap. Nauchn. Sem. POMI, 386 (2011),  100–128
  31. Hochschild cohomology of algebras of dihedral type. II. Local algebras

    Zap. Nauchn. Sem. POMI, 375 (2010),  92–129
  32. On construction of bimodule resolutions with the help of Happel's lemma

    Zap. Nauchn. Sem. POMI, 375 (2010),  61–70
  33. Hochschild cohomology of algebras of semidihedral type. I. Group algebras of semidihedral groups

    Algebra i Analiz, 21:2 (2009),  1–51
  34. Bimodule resolution of a group algebra

    Zap. Nauchn. Sem. POMI, 365 (2009),  143–150
  35. Cohomology of algebras of semidihedral type. VII. Local algebras

    Zap. Nauchn. Sem. POMI, 365 (2009),  130–142
  36. Hochschild cohomology of algebras of quaternion type. III. Algebras with a small parameter

    Zap. Nauchn. Sem. POMI, 356 (2008),  46–84
  37. Hochschild cohomology of the integral group ring of the dihedral group. I: Even case

    Algebra i Analiz, 19:5 (2007),  70–123
  38. Hochschild cohomology of algebras of quaternion type. II. The family $Q(2\mathcal B)_1$ in characteristic 2

    Zap. Nauchn. Sem. POMI, 349 (2007),  53–134
  39. Cohomology of algebras of semidihedral type. VI

    Zap. Nauchn. Sem. POMI, 343 (2007),  183–198
  40. Hochschild cohomology for self-injective algebras of tree class $D_n$. I

    Zap. Nauchn. Sem. POMI, 343 (2007),  121–182
  41. Hochschild cohomology of the Liu–Schulz algebras

    Algebra i Analiz, 18:4 (2006),  39–82
  42. Hochschild cohomology of algebras of quaternion type, I: Generalized quaternion groups

    Algebra i Analiz, 18:1 (2006),  55–107
  43. A combinatorial proof of Euler–Fermat's theorem on presentation of primes of the form $p=8k+3$ by the quadratic form $x^2+2y^2$

    Zap. Nauchn. Sem. POMI, 330 (2006),  155–157
  44. Cohomology of algebras of semidihedral type. V

    Zap. Nauchn. Sem. POMI, 330 (2006),  131–154
  45. Cocycles in the relative Hochschild cohomology

    Zap. Nauchn. Sem. POMI, 330 (2006),  29–35
  46. Finite generation of the Yoneda algebra of a symmetric special biserial algebra

    Algebra i Analiz, 17:3 (2005),  1–23
  47. Bimodule resolution of Möbius algebra

    Zap. Nauchn. Sem. POMI, 321 (2005),  36–66
  48. Hochschild cohomologies of dihedral type algebras, I: $D(3\mathcal K)$ series in characteristic 2

    Algebra i Analiz, 16:6 (2004),  53–122
  49. Projective resolutions and Yoneda algebras for algebras of dihedral type: the family $D(3\mathcal Q)$

    Fundam. Prikl. Mat., 10:4 (2004),  65–89
  50. Cohomology of algebras of semidihedral type, IV

    Zap. Nauchn. Sem. POMI, 319 (2004),  81–116
  51. Computation of the Yoneda algebras for algebras of dihedral type

    Zap. Nauchn. Sem. POMI, 305 (2003),  101–120
  52. Cohomology of algebras of semidihedral type, III: the family $SD(3\mathcal K)$

    Zap. Nauchn. Sem. POMI, 305 (2003),  84–100
  53. Yoneda algebras for the Liu–Shultz example

    Algebra i Analiz, 14:4 (2002),  19–35
  54. Cohomology of algebras of dihedral type, III: the family $D(2\mathcal A)$

    Zap. Nauchn. Sem. POMI, 289 (2002),  113–133
  55. Yoneda algebra of Möbius algebra

    Zap. Nauchn. Sem. POMI, 289 (2002),  90–112
  56. Cohomology of algebras of dihedral type, IV: the family $D(2\mathcal B)$

    Zap. Nauchn. Sem. POMI, 289 (2002),  76–89
  57. Cohomology of algebras of semidihedral type. II

    Zap. Nauchn. Sem. POMI, 289 (2002),  9–36
  58. Cohomology of algebras of semidyhedral type

    Algebra i Analiz, 13:4 (2001),  54–85
  59. Cohomology of algebras of dihedral type. II

    Algebra i Analiz, 13:1 (2001),  3–25
  60. Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$

    Fundam. Prikl. Mat., 7:4 (2001),  983–992
  61. Projective resolutions of simple modules for a class of Frobenius algebras

    Fundam. Prikl. Mat., 7:3 (2001),  637–650
  62. Completion of modules over right noetherian serial rings

    Zap. Nauchn. Sem. POMI, 281 (2001),  170–185
  63. Basic submodules over right noetherian serial rings. II

    Zap. Nauchn. Sem. POMI, 281 (2001),  154–169
  64. $QF$-proper classes and relative stable categories

    Zap. Nauchn. Sem. POMI, 281 (2001),  133–153
  65. Basic submodules of modules over right noetherian serial rings. I

    Zap. Nauchn. Sem. POMI, 272 (2000),  129–143
  66. Duality for categories of finitely presented modules

    Algebra i Analiz, 11:6 (1999),  139–152
  67. Localization of pre-triangulated categories

    Algebra i Analiz, 11:3 (1999),  20–52
  68. Decomposition of Grothendieck group of stable categories of finite groups

    Zap. Nauchn. Sem. POMI, 265 (1999),  163–168
  69. Cohomology of algebras of dihedral type. I

    Zap. Nauchn. Sem. POMI, 265 (1999),  139–162
  70. Yoneda algebras of serial $QF$-algebras

    Zap. Nauchn. Sem. POMI, 265 (1999),  130–138
  71. Compatible decompositions of modules over Dedekind prime rings

    Algebra i Analiz, 9:4 (1997),  47–62
  72. Krull dimension of the module category over right noetherian serial rings

    Zap. Nauchn. Sem. POMI, 236 (1997),  73–86
  73. A theorem on compatible bases in modules over Dedekind rings

    Algebra i Analiz, 7:4 (1995),  157–175
  74. Relations for relative Grothendieck groups of rings of finite representation type

    Zap. Nauchn. Sem. POMI, 227 (1995),  61–65
  75. Derived categories of an additive category

    Algebra i Analiz, 4:5 (1992),  91–103
  76. Relative homological algebra in pre-abelian categories. I. Derived categories

    Algebra i Analiz, 4:1 (1992),  98–119
  77. Algebraically compact modules and relative homological algebra over tame hereditary algebras

    Algebra Logika, 30:3 (1991),  259–292
  78. Relative Grothendieck groups and exact sequences over tame hereditary algebras

    Algebra i Analiz, 2:1 (1990),  47–72
  79. The Kuz'minov formula

    Sibirsk. Mat. Zh., 29:4 (1988),  202–204
  80. Inductively closed proper classes over bounded $hnp$-rings

    Algebra Logika, 25:4 (1986),  384–404
  81. The $\omega$-Cohigh purity in a category of modules

    Mat. Zametki, 33:5 (1983),  785–796
  82. Inductive purities in a category of modules

    Sibirsk. Mat. Zh., 24:4 (1983),  201–205
  83. On an axiomatic description of weak purities in the category of modules

    Mat. Sb. (N.S.), 109(151):1(5) (1979),  80–92
  84. On weak and $\omega$-high purity in the category of modules

    Mat. Sb. (N.S.), 105(147):3 (1978),  389–402
  85. On the definition of purity of modules

    Mat. Zametki, 11:4 (1972),  375–380

  86. Anatoly Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 513 (2022),  5–8
  87. 80 anniversary of Professor Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 492 (2020),  5–9
  88. To the anniversary of Sergei Vladimirovich Vostokov

    Algebra i Analiz, 27:6 (2015),  3–5
  89. Anatolii Vladimirovich Yakovlev

    Zap. Nauchn. Sem. POMI, 272 (2000),  5–13


© Steklov Math. Inst. of RAS, 2024