RUS  ENG
Full version
PEOPLE

Vainerman Leonid Iosifovich

Publications in Math-Net.Ru

  1. A Gelfand Pair of Compact Quantum Groups

    Funktsional. Anal. i Prilozhen., 29:2 (1995),  67–71
  2. Quantized hypercomplex systems

    Funktsional. Anal. i Prilozhen., 23:4 (1989),  77–78
  3. Generalized translation operators that are generated by differential equations

    Dokl. Akad. Nauk SSSR, 302:1 (1988),  14–17
  4. The duality of algebras with involution and generalized shift operators

    Itogi Nauki i Tekhn. Ser. Mat. Anal., 24 (1986),  165–205
  5. The duality principle for finite hypercomplex systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1985, no. 2,  12–21
  6. Hypercomplex systems with compact and discrete basis

    Dokl. Akad. Nauk SSSR, 278:1 (1984),  16–20
  7. The finite hypercomplex systems of Kats

    Funktsional. Anal. i Prilozhen., 17:2 (1983),  68–69
  8. The Plancherel formula and the inversion formula for generalized translation operators

    Dokl. Akad. Nauk SSSR, 257:4 (1981),  792–795
  9. Maximal dissipativity of abstract differential operators of hyperbolic type

    Differ. Uravn., 17:9 (1981),  1678–1681
  10. Extensions of closed operators in Hilbert space

    Mat. Zametki, 28:6 (1980),  833–842
  11. A second order degenerate elliptic equation in Hilbert space

    Differ. Uravn., 14:3 (1978),  482–491
  12. A hyperbolic equation with degeneracy in Hilbert space

    Sibirsk. Mat. Zh., 18:4 (1977),  736–746
  13. Self-conjugacy of abstract differential operators of the hyperbolic type

    Mat. Zametki, 20:5 (1976),  703–708
  14. On boundary value problems for a second-order differential equation of hyperbolic type in a Hilbert space

    Dokl. Akad. Nauk SSSR, 221:4 (1975),  763–766
  15. Selfadjoint boundary-value problems for strongly elliptic and hyperbolic equations of second order in Hilbert space

    Dokl. Akad. Nauk SSSR, 218:4 (1974),  745–748
  16. Characterization of objects dual to locally compact groups

    Funktsional. Anal. i Prilozhen., 8:1 (1974),  75–76
  17. Nonunimodular ring groups and Hopf–von Neumann algebras

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  194–225
  18. Nonunimodular ring groups and Hopf–von Neumann algebras

    Dokl. Akad. Nauk SSSR, 211:5 (1973),  1031–1034

  19. Georgii Isaakovich Kats (obituary)

    Uspekhi Mat. Nauk, 34:2(206) (1979),  185–188


© Steklov Math. Inst. of RAS, 2025