|
|
Publications in Math-Net.Ru
-
On mean values of the $L_q$-discrepancies of point distributions
Algebra i Analiz, 24:6 (2012), 196–225
-
Khinchin's inequality and Chen's theorem
Algebra i Analiz, 23:4 (2011), 179–204
-
On the spectrum of polyharmonic operators with limit-periodic potentials
Algebra i Analiz, 17:5 (2005), 164–189
-
Asymptotic estimates for spectral, bands of periodic Schrödenger operators
Algebra i Analiz, 17:1 (2005), 276–288
-
MacWilliams duality and the Rosenbloom–Tsfasman metric
Mosc. Math. J., 2:1 (2002), 81–97
-
Coding theory and uniform distributions
Algebra i Analiz, 13:2 (2001), 191–239
-
Davenport's theorem in the theory of irregularities of point distribution
Zap. Nauchn. Sem. POMI, 269 (2000), 339–353
-
On the distribution of algebraic numbers in parallelotopes
Algebra i Analiz, 10:1 (1998), 68–87
-
On the Littlewood–Paley theory for multiple Fourier series
Zap. Nauchn. Sem. POMI, 226 (1996), 155–169
-
Anomalies in spectral asymptotics
Dokl. Akad. Nauk, 340:5 (1995), 597–599
-
Constructions of uniform distributions in terms of geometry of numbers
Algebra i Analiz, 6:3 (1994), 200–230
-
Geometry of numbers and uniform distributions
Dokl. Akad. Nauk SSSR, 318:5 (1991), 1092–1095
-
Lattices in algebraic number fields and uniform distribution mod 1
Algebra i Analiz, 1:2 (1989), 207–228
-
Lattices in algebraic number fields
Dokl. Akad. Nauk SSSR, 306:3 (1989), 553–555
-
Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators
Trudy Mat. Inst. Steklov., 171 (1985), 3–122
-
Brillouin zones and geometry of numbers
Zap. Nauchn. Sem. LOMI, 134 (1984), 206–225
-
The multidimensional Schrödinger operator with a periodic potential
Izv. Akad. Nauk SSSR Ser. Mat., 47:3 (1983), 659–687
-
The spectrum structure of multidimensional Schrödinger operator with a periodic potential
Dokl. Akad. Nauk SSSR, 262:4 (1982), 847–850
-
Spectrum of multidimensional operators with periodic coefficients
Funktsional. Anal. i Prilozhen., 16:4 (1982), 88–89
-
General properties of the spectrum of differential and pseudodifferential operators with periodic coefficients and some problems of the geometry of numbers
Dokl. Akad. Nauk SSSR, 256:1 (1981), 47–51
-
Structure of the spectrum of a two-dimensional Schrödinger operator with periodic potential and some arithmetic properties of two-dimensional lattices
Trudy Mat. Inst. Steklov., 158 (1981), 163–174
-
Remark on the spectrum structure of the two-dimensional Schrödinger operator with the periodic potential
Zap. Nauchn. Sem. LOMI, 109 (1981), 131–133
-
Finiteness of the number of lacunae in the spectrum of the multidimensional polyharmonic operator with a periodic potential
Mat. Sb. (N.S.), 113(155):1(9) (1980), 133–145
-
Proof of the Bethe–Sommerfeld conjecture in dimension two
Dokl. Akad. Nauk SSSR, 248:1 (1979), 39–42
-
On the Bethe–Sommerfeld conjecture
Dokl. Akad. Nauk SSSR, 244:3 (1979), 533–534
-
Weyl's formula in the spectral theory of automorphic functions
Funktsional. Anal. i Prilozhen., 13:1 (1979), 67–68
-
On the number of lattice points inside the sphere with transposing center
Zap. Nauchn. Sem. LOMI, 91 (1979), 25–30
-
High-energy asymptotics of the potential scattering amplitude
Dokl. Akad. Nauk SSSR, 241:2 (1978), 326–329
-
Uniform coordinates and spectral asymptotics for solutions of the scattering problem for the Schrödinger equation
Zap. Nauchn. Sem. LOMI, 69 (1977), 171–199
-
Coordinate asymptotic behavior of the solution of the scattering problem for the Schrödinger equation
TMF, 19:2 (1974), 217–232
-
Asimptotic Expansion of Green Function in Scatering Problem for Schrödinger Equation
Zap. Nauchn. Sem. LOMI, 42 (1974), 236–238
-
The spectrum of a Schrödinger operator with rapidly oscillating potential
Trudy Mat. Inst. Steklov., 125 (1973), 187–195
-
On eigen-values of the Schrödinger's operator, belonging to the continuous spectrum
Zap. Nauchn. Sem. LOMI, 38 (1973), 149–152
-
Wave operators for the Schrödinger equation with rapidly oscillating potential
Dokl. Akad. Nauk SSSR, 202:4 (1972), 755–757
-
Scattering problem for radial Schrödinger equation with a slowly decreasing potential
TMF, 10:2 (1972), 238–248
-
On a characteristic property of Weyl quantization
TMF, 2:3 (1970), 292–296
© , 2025