RUS  ENG
Full version
PEOPLE

Skriganov Maxim Mikhailovich

Publications in Math-Net.Ru

  1. On mean values of the $L_q$-discrepancies of point distributions

    Algebra i Analiz, 24:6 (2012),  196–225
  2. Khinchin's inequality and Chen's theorem

    Algebra i Analiz, 23:4 (2011),  179–204
  3. On the spectrum of polyharmonic operators with limit-periodic potentials

    Algebra i Analiz, 17:5 (2005),  164–189
  4. Asymptotic estimates for spectral, bands of periodic Schrödenger operators

    Algebra i Analiz, 17:1 (2005),  276–288
  5. MacWilliams duality and the Rosenbloom–Tsfasman metric

    Mosc. Math. J., 2:1 (2002),  81–97
  6. Coding theory and uniform distributions

    Algebra i Analiz, 13:2 (2001),  191–239
  7. Davenport's theorem in the theory of irregularities of point distribution

    Zap. Nauchn. Sem. POMI, 269 (2000),  339–353
  8. On the distribution of algebraic numbers in parallelotopes

    Algebra i Analiz, 10:1 (1998),  68–87
  9. On the Littlewood–Paley theory for multiple Fourier series

    Zap. Nauchn. Sem. POMI, 226 (1996),  155–169
  10. Anomalies in spectral asymptotics

    Dokl. Akad. Nauk, 340:5 (1995),  597–599
  11. Constructions of uniform distributions in terms of geometry of numbers

    Algebra i Analiz, 6:3 (1994),  200–230
  12. Geometry of numbers and uniform distributions

    Dokl. Akad. Nauk SSSR, 318:5 (1991),  1092–1095
  13. Lattices in algebraic number fields and uniform distribution mod 1

    Algebra i Analiz, 1:2 (1989),  207–228
  14. Lattices in algebraic number fields

    Dokl. Akad. Nauk SSSR, 306:3 (1989),  553–555
  15. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators

    Trudy Mat. Inst. Steklov., 171 (1985),  3–122
  16. Brillouin zones and geometry of numbers

    Zap. Nauchn. Sem. LOMI, 134 (1984),  206–225
  17. The multidimensional Schrödinger operator with a periodic potential

    Izv. Akad. Nauk SSSR Ser. Mat., 47:3 (1983),  659–687
  18. The spectrum structure of multidimensional Schrödinger operator with a periodic potential

    Dokl. Akad. Nauk SSSR, 262:4 (1982),  847–850
  19. Spectrum of multidimensional operators with periodic coefficients

    Funktsional. Anal. i Prilozhen., 16:4 (1982),  88–89
  20. General properties of the spectrum of differential and pseudodifferential operators with periodic coefficients and some problems of the geometry of numbers

    Dokl. Akad. Nauk SSSR, 256:1 (1981),  47–51
  21. Structure of the spectrum of a two-dimensional Schrödinger operator with periodic potential and some arithmetic properties of two-dimensional lattices

    Trudy Mat. Inst. Steklov., 158 (1981),  163–174
  22. Remark on the spectrum structure of the two-dimensional Schrödinger operator with the periodic potential

    Zap. Nauchn. Sem. LOMI, 109 (1981),  131–133
  23. Finiteness of the number of lacunae in the spectrum of the multidimensional polyharmonic operator with a periodic potential

    Mat. Sb. (N.S.), 113(155):1(9) (1980),  133–145
  24. Proof of the Bethe–Sommerfeld conjecture in dimension two

    Dokl. Akad. Nauk SSSR, 248:1 (1979),  39–42
  25. On the Bethe–Sommerfeld conjecture

    Dokl. Akad. Nauk SSSR, 244:3 (1979),  533–534
  26. Weyl's formula in the spectral theory of automorphic functions

    Funktsional. Anal. i Prilozhen., 13:1 (1979),  67–68
  27. On the number of lattice points inside the sphere with transposing center

    Zap. Nauchn. Sem. LOMI, 91 (1979),  25–30
  28. High-energy asymptotics of the potential scattering amplitude

    Dokl. Akad. Nauk SSSR, 241:2 (1978),  326–329
  29. Uniform coordinates and spectral asymptotics for solutions of the scattering problem for the Schrödinger equation

    Zap. Nauchn. Sem. LOMI, 69 (1977),  171–199
  30. Coordinate asymptotic behavior of the solution of the scattering problem for the Schrödinger equation

    TMF, 19:2 (1974),  217–232
  31. Asimptotic Expansion of Green Function in Scatering Problem for Schrödinger Equation

    Zap. Nauchn. Sem. LOMI, 42 (1974),  236–238
  32. The spectrum of a Schrödinger operator with rapidly oscillating potential

    Trudy Mat. Inst. Steklov., 125 (1973),  187–195
  33. On eigen-values of the Schrödinger's operator, belonging to the continuous spectrum

    Zap. Nauchn. Sem. LOMI, 38 (1973),  149–152
  34. Wave operators for the Schrödinger equation with rapidly oscillating potential

    Dokl. Akad. Nauk SSSR, 202:4 (1972),  755–757
  35. Scattering problem for radial Schrödinger equation with a slowly decreasing potential

    TMF, 10:2 (1972),  238–248
  36. On a characteristic property of Weyl quantization

    TMF, 2:3 (1970),  292–296


© Steklov Math. Inst. of RAS, 2025