RUS  ENG
Full version
PEOPLE

Anikonov Dmitrii Sergeevich

Publications in Math-Net.Ru

  1. New formulas for the inversion of the Radon transform

    Dokl. RAN. Math. Inf. Proc. Upr., 523 (2025),  10–14
  2. Inversion problem for Radon transforms defined on pseudoconvex sets

    Dokl. RAN. Math. Inf. Proc. Upr., 516 (2024),  93–97
  3. The problem of an unknown boundary for generalized Radon transforms in even-dimensional space

    Mat. Tr., 27:3 (2024),  5–19
  4. Radon transform inversion formula in the class of discontinuous functions

    Sib. Zh. Ind. Mat., 27:3 (2024),  5–11
  5. Inversion of Radon transformation for discontinuous functions in unbounded sets

    Vladikavkaz. Mat. Zh., 26:4 (2024),  21–27
  6. Formula for solving a mixed problem for a hyperbolic equation

    Vladikavkaz. Mat. Zh., 25:2 (2023),  5–13
  7. Formula of Kirchhoff type for mixed problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 6,  3–10
  8. Cauchy problem for a differential equation with piecewise smooth characteristics

    Sib. J. Pure and Appl. Math., 18:3 (2018),  3–19
  9. Forward and inverse problems with discontinuous coefficient

    Sib. J. Pure and Appl. Math., 18:2 (2018),  13–29
  10. An underdetermined problem of integral geometry for the generalized Radon transform

    Sib. Zh. Ind. Mat., 19:1 (2016),  18–26
  11. An integral geometry underdetermined problem for a family of curves

    Sibirsk. Mat. Zh., 56:2 (2015),  265–281
  12. The integro-differential indicator for a problem of single-beam tomography

    Sib. Zh. Ind. Mat., 17:2 (2014),  3–10
  13. An inverse problem of location type for a hyperbolic system

    Sib. Zh. Ind. Mat., 16:4 (2013),  3–20
  14. Differential properties of a generalized solution to a hyperbolic system of first-order differential equations

    Sib. Zh. Ind. Mat., 16:2 (2013),  26–39
  15. A polychromatic inhomogeneity indicator in an unknown medium for an $X$-ray tomography problem

    Sibirsk. Mat. Zh., 53:4 (2012),  721–740
  16. Problem of two-beam tomography

    Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012),  372–378
  17. The problem of single-beam probing of an unknown medium

    Sib. Zh. Ind. Mat., 14:2 (2011),  21–27
  18. The integral geometry boundary determination problem for a pencil of straight lines

    Sibirsk. Mat. Zh., 52:5 (2011),  962–976
  19. Ill-posed problems of radiation tomography

    Sib. Èlektron. Mat. Izv., 7 (2010),  73–80
  20. A method for studying singular integral equations

    Sibirsk. Mat. Zh., 51:5 (2010),  961–973
  21. Radiation Tomography and transport equation

    Dal'nevost. Mat. Zh., 8:1 (2008),  5–18
  22. Generalized Radon Transform and X-ray Tomography

    Sib. Èlektron. Mat. Izv., 5 (2008),  440–447
  23. The indicator of contact boundaries for an integral geometry problem

    Sibirsk. Mat. Zh., 49:4 (2008),  739–755
  24. The statement and numerical solution of an optimization problem in X-ray tomography

    Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  18–25
  25. The boundary-value problem for the transport equation with purely compton scattering

    Sibirsk. Mat. Zh., 46:1 (2005),  3–16
  26. Simple and complex mathematical models of stationary transport theory

    Dal'nevost. Mat. Zh., 3:1 (2002),  18–23
  27. The kinetic transport equation in the case of Compton scattering

    Sibirsk. Mat. Zh., 43:5 (2002),  987–1001
  28. Necessary and sufficient conditions for the uniqueness of a solution to a tomography problem

    Zh. Vychisl. Mat. Mat. Fiz., 42:3 (2002),  370–379
  29. Reduction of the problem of the mutual discharge of debts to the transportation problem

    Dokl. Akad. Nauk, 352:6 (1997),  730
  30. A Stefan-type problem for the transport equation

    Dokl. Akad. Nauk, 338:1 (1994),  25–28
  31. The use of singularities in the solution of the transport equation in x-ray tomography

    Dokl. Akad. Nauk, 335:6 (1994),  702–704
  32. Determination of the coefficient of a transport equation with energy and angular singularities of external radiation

    Dokl. Akad. Nauk, 327:2 (1992),  205–207
  33. On the uniqueness of the solution of problems in integral geometry

    Sibirsk. Mat. Zh., 31:6 (1990),  16–24
  34. A method of finding the integral characteristics of attenuation factors for transfer equations

    Zh. Vychisl. Mat. Mat. Fiz., 30:8 (1990),  1262–1267
  35. Determination of the integral characteristics of the radiation attenuation coefficient

    Dokl. Akad. Nauk SSSR, 308:4 (1989),  838–841
  36. Examples of the nonuniqueness of the solution of a problem of integral geometry

    Dokl. Akad. Nauk SSSR, 299:1 (1988),  15–17
  37. Uniqueness of the determination of the coefficient of the transport equation with a special type of source

    Dokl. Akad. Nauk SSSR, 284:5 (1985),  1033–1037
  38. Uniqueness of the simultaneous determination of two coefficients of the transport equation

    Dokl. Akad. Nauk SSSR, 277:4 (1984),  777–779
  39. Multidimensional inverse problems for the transport equation

    Differ. Uravn., 20:5 (1984),  817–824
  40. On the question of the uniqueness of the solution of inverse problems for equations of mathematical physics

    Differ. Uravn., 15:1 (1979),  3–9
  41. On the boundedness of a singular integral operator in the space $C^\alpha(\overline G)$

    Mat. Sb. (N.S.), 104(146):4(12) (1977),  515–534
  42. The inverse problem of determining a body for the transport equation

    Differ. Uravn., 12:1 (1976),  172–174
  43. The uniqueness of the determination of the coefficient and right-hand side of the transport equation

    Differ. Uravn., 11:1 (1975),  8–18
  44. On an inverse problem for the transport equation

    Sibirsk. Mat. Zh., 16:3 (1975),  432–439
  45. Inverse problems for the transport equation

    Differ. Uravn., 10:1 (1974),  7–17


© Steklov Math. Inst. of RAS, 2025