|
|
Publications in Math-Net.Ru
-
$p$-valent functions
Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 5, 15–24
-
Mean values of analytic functions
Sibirsk. Mat. Zh., 18:4 (1977), 747–754
-
Extremal problems in certain classes of entire functions of exponential type
Sibirsk. Mat. Zh., 17:3 (1976), 532–539
-
Some estimates in the class of analytic functions of bounded type
Mat. Sb. (N.S.), 84(126):2 (1971), 273–289
-
The variational method in the theory of parametrically representable analytic functions
Trudy Mat. Inst. Steklov., 94 (1968), 19–26
-
Variational method in the theory of functions of bounded type
Mat. Sb. (N.S.), 69(111):3 (1966), 422–433
-
A variational method in the theory of analytic functions with bounded mean modulus
Mat. Sb. (N.S.), 67(109):4 (1965), 570–585
-
Typically real functions
Mat. Sb. (N.S.), 64(106):2 (1964), 171–184
-
An extension of the Goluzin–Schiffer variational method to multiply-connected regions
Dokl. Akad. Nauk SSSR, 142:3 (1962), 503–506
-
On the maximum conformal radius of a fundamental domain of a group of fractional-linear transformations
Mat. Sb. (N.S.), 52(94):1 (1960), 629–640
-
On the maximum of the conformal radius of the fundamental region of a given group
Mat. Sb. (N.S.), 44(86):2 (1958), 213–224
-
On coefficients of typically real functions
Dokl. Akad. Nauk SSSR, 115:2 (1957), 211–213
-
On the maximum of the conformal radius of the fundamental region of a doubly-periodic group
Dokl. Akad. Nauk SSSR, 114:2 (1957), 241–244
-
The method of variations in the theory of $p$-valent functions
Uspekhi Mat. Nauk, 11:5(71) (1956), 60–66
-
On typically real functions of order $p$
Mat. Sb. (N.S.), 35(77):2 (1954), 193–214
-
On the class of regular functions which do not take on any pair of values $w$ and $-w$
Rec. Math. [Mat. Sbornik] N.S., 19(61):1 (1946), 33–46
-
On a property of bounded functions
Rec. Math. [Mat. Sbornik] N.S., 16(58):3 (1945), 291–294
-
Sur les bornes de l'étoilement et de la convexité des fonctions $p$-valentes
Rec. Math. [Mat. Sbornik] N.S., 16(58):1 (1945), 81–86
-
Zur Theorie der multivalenten Funktionen
Rec. Math. [Mat. Sbornik] N.S., 8(50):2 (1940), 239–250
© , 2024