RUS  ENG
Full version
PEOPLE

Gel'fer Samuil Aizikovich

Publications in Math-Net.Ru

  1. $p$-valent functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1977, no. 5,  15–24
  2. Mean values of analytic functions

    Sibirsk. Mat. Zh., 18:4 (1977),  747–754
  3. Extremal problems in certain classes of entire functions of exponential type

    Sibirsk. Mat. Zh., 17:3 (1976),  532–539
  4. Some estimates in the class of analytic functions of bounded type

    Mat. Sb. (N.S.), 84(126):2 (1971),  273–289
  5. The variational method in the theory of parametrically representable analytic functions

    Trudy Mat. Inst. Steklov., 94 (1968),  19–26
  6. Variational method in the theory of functions of bounded type

    Mat. Sb. (N.S.), 69(111):3 (1966),  422–433
  7. A variational method in the theory of analytic functions with bounded mean modulus

    Mat. Sb. (N.S.), 67(109):4 (1965),  570–585
  8. Typically real functions

    Mat. Sb. (N.S.), 64(106):2 (1964),  171–184
  9. An extension of the Goluzin–Schiffer variational method to multiply-connected regions

    Dokl. Akad. Nauk SSSR, 142:3 (1962),  503–506
  10. On the maximum conformal radius of a fundamental domain of a group of fractional-linear transformations

    Mat. Sb. (N.S.), 52(94):1 (1960),  629–640
  11. On the maximum of the conformal radius of the fundamental region of a given group

    Mat. Sb. (N.S.), 44(86):2 (1958),  213–224
  12. On coefficients of typically real functions

    Dokl. Akad. Nauk SSSR, 115:2 (1957),  211–213
  13. On the maximum of the conformal radius of the fundamental region of a doubly-periodic group

    Dokl. Akad. Nauk SSSR, 114:2 (1957),  241–244
  14. The method of variations in the theory of $p$-valent functions

    Uspekhi Mat. Nauk, 11:5(71) (1956),  60–66
  15. On typically real functions of order $p$

    Mat. Sb. (N.S.), 35(77):2 (1954),  193–214
  16. On the class of regular functions which do not take on any pair of values $w$ and $-w$

    Rec. Math. [Mat. Sbornik] N.S., 19(61):1 (1946),  33–46
  17. On a property of bounded functions

    Rec. Math. [Mat. Sbornik] N.S., 16(58):3 (1945),  291–294
  18. Sur les bornes de l'étoilement et de la convexité des fonctions $p$-valentes

    Rec. Math. [Mat. Sbornik] N.S., 16(58):1 (1945),  81–86
  19. Zur Theorie der multivalenten Funktionen

    Rec. Math. [Mat. Sbornik] N.S., 8(50):2 (1940),  239–250


© Steklov Math. Inst. of RAS, 2024