RUS  ENG
Full version
PEOPLE

Sumin Vladimir Iosifovich

Publications in Math-Net.Ru

  1. Regularization of classical optimality conditions
    in optimization problems of linear distributed Volterra-type systems with pointwise state constraints


    Russian Universities Reports. Mathematics, 29:148 (2024),  455–484
  2. Regularization of classical optimality conditions in optimization problems for linear Volterra-type systems with functional constraints

    Russian Universities Reports. Mathematics, 28:143 (2023),  298–325
  3. On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints

    Izv. IMI UdGU, 59 (2022),  85–113
  4. Volterra functional equations and optimization of distributed systems. Special optimal controls

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209 (2022),  53–76
  5. Volterra Functional Equations in the Theory of Optimization of Distributed Systems. On the Problem of Singularity of Controlled Initial–Boundary Value Problems

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  188–201
  6. Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type

    Zh. Vychisl. Mat. Mat. Fiz., 62:1 (2022),  45–70
  7. Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:2 (2021),  265–284
  8. Volterra funktional equations in the stability problem for the existence of global solutions of distributed controlled systems

    Russian Universities Reports. Mathematics, 25:132 (2020),  422–440
  9. Controlled Volterra functional equations and the contraction mapping principle

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019),  262–278
  10. Volterra functional-operator equations and distributed optimization problems

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  745–756
  11. On the initial-boundary value problem for semilinear parabolic equation with controlled principal part

    Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018),  317–324
  12. About singular controls of pointwise maximum principle for optimization problem connected with Goursat-Darboux system

    Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018),  278–284
  13. On singular controls of a maximum principle for the problem of the Goursat–Darboux system optimization

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015),  483–491
  14. Singular optimal controls in the distributed problems and Volterra functional-operator equations

    Izv. IMI UdGU, 2012, no. 1(39),  128–129
  15. On singular controls in the sense of the maximum principle for terminal optimization problem connected with Goursat–Darboux system

    Izv. IMI UdGU, 2012, no. 1(39),  80–81
  16. The maximum principle for terminal optimization problem connected with Goursat–Darboux system in the class of functions having summable mixed derivatives

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 2,  52–67
  17. On singular controls in the sense of the pointwise maximum principle in distributed optimization problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  70–80
  18. Volterra functional equations and the conditions for conservation of the global solvability of control initial boundary value problems

    Izv. IMI UdGU, 2006, no. 3(37),  143–146
  19. On some criteria for the quasinilpotency of functional operators

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 2,  77–80
  20. Operators in the spaces of measurable functions: the Volterra property and quasinilpotency

    Differ. Uravn., 34:10 (1998),  1402–1411
  21. On functional Volterra equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 9,  67–77
  22. Strong degeneration of singular controls in distributed problems of optimization

    Dokl. Akad. Nauk SSSR, 320:2 (1991),  295–299
  23. Sufficient stability conditions for the existence of global solutions of controllable boundary value problems

    Differ. Uravn., 26:12 (1990),  2097–2109
  24. The features of gradient methods for distributed optimal-control problems

    Zh. Vychisl. Mat. Mat. Fiz., 30:1 (1990),  3–21
  25. Volterra functional-operator equations in the theory of the optimal control of distributed systems

    Dokl. Akad. Nauk SSSR, 305:5 (1989),  1056–1059
  26. Stability of the existence of a global solution to the first boundary value problem for a controllable parabolic equation

    Differ. Uravn., 22:9 (1986),  1587–1595
  27. Optimization of distributed systems in a Lebesgue space

    Sibirsk. Mat. Zh., 22:6 (1981),  142–161
  28. Optimization of nonlinear transport processes

    Dokl. Akad. Nauk SSSR, 247:4 (1979),  794–798
  29. A nonlinear system of junction transfer in statistical nerve ensembles

    Differ. Uravn., 15:9 (1979),  1661–1666
  30. Optimization of the non-linear systems of transport theory

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  99–111
  31. Nonlinear integro-differential systems of equations of nonstationary transfer

    Sibirsk. Mat. Zh., 19:4 (1978),  842–848
  32. A nonlinear integrodifferential equation of nonstationary transfer

    Mat. Zametki, 21:5 (1977),  665–676
  33. The first variation and the associated problem in optimal control theory

    Funktsional. Anal. i Prilozhen., 10:4 (1976),  95–96
  34. Time-optimality problems in the theory of the optimal control of transfer processes

    Differ. Uravn., 11:4 (1975),  727–740
  35. Necessary optimality conditions for controlled stationary transport processes

    Izv. Vyssh. Uchebn. Zaved. Mat., 1974, no. 10,  46–56
  36. Multidimensional variational problems in a class of discontinuous functions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1973, no. 8,  54–67
  37. A certain problem of optimal control of nonstationary transport processes

    Differ. Uravn., 8:12 (1972),  2235–2243
  38. Problems of the stability of nonlinear Goursat–Darboux systems

    Differ. Uravn., 8:5 (1972),  845–856
  39. The optimization of objects with distributed parameters, described by Goursat–Darboux systems

    Zh. Vychisl. Mat. Mat. Fiz., 12:1 (1972),  61–77
  40. Criterion for the compactness of a class of functions of $W_m^l$ ($1<ml\leqslant n$)

    Mat. Zametki, 7:6 (1970),  733–741

  41. XVI School on Operator Theory in Functional Spaces

    Uspekhi Mat. Nauk, 47:3(285) (1992),  193–194


© Steklov Math. Inst. of RAS, 2025