RUS  ENG
Full version
PEOPLE

Prikarpatskii Anatolii Karolevich

Publications in Math-Net.Ru

  1. Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrödinger Type Dynamical Systems

    Fiz. Elem. Chast. Atom. Yadra, 51:4 (2020),  468
  2. Dispersionless Multi-Dimensional Integrable Systems and Related Conformal Structure Generating Equations of Mathematical Physics

    SIGMA, 15 (2019), 079, 20 pp.
  3. On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems

    SIGMA, 14 (2018), 023, 15 pp.
  4. The quantum charged particle self-interaction problem within the Fock many temporal and Feynman proper time paradigms

    Phys. Part. Nucl. Lett., 14:1 (2017),  87–101
  5. The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models

    BJMP, 2:2 (2016),  105–196
  6. On the classical Maxwell–Lorentz Electrodynamics, the electron inertia problem, and the feynman proper time paradigm

    Ukr. J. Phys., 61:3 (2016),  187–212
  7. Maxwell–Lorentz electrodinamics revisited via the Lagrangian formalism and Feynman proper time paradigm

    Mathematics, 3:2 (2015),  190–257
  8. Integrability of and differential–algebraic structures for spatially 1D hydrodynamical systems of Riemann type

    Chaos Solitons Fractals, 59 (2014),  59–81
  9. A current algebra approach to the equilibrium classical statistical mechanics and its applications

    Cond. Matt. Phys., 16:2 (2013),  23702–13
  10. The Maxwell electromagnetic equations and the Lorentz type force derivation-the Feynman approach legacy

    Internat. J. Theoret. Phys., 51:1 (2012),  237–245
  11. On a Nonlocal Ostrovsky–Whitham Type Dynamical System, Its Riemann Type Inhomogeneous Regularizations and Their Integrability

    SIGMA, 6 (2010), 002, 13 pp.
  12. The vacuum structure, special relativity theory, and quantum mechanics: A return to the field theory approach without geometry

    TMF, 160:2 (2009),  249–269
  13. Verma modules over the quantum Lie algebra of currents on the circle

    Dokl. Akad. Nauk SSSR, 314:2 (1990),  268–272
  14. A bilocal periodic problem for Sturm–Liouville and Dirac differential operators, and some applications in the theory of nonlinear dynamical systems

    Dokl. Akad. Nauk SSSR, 310:1 (1990),  29–32
  15. Gibbs representations of the Lie algebra of currents, and the complete system of N. N. Bogolyubov quantum functional equations in equilibrium statistical mechanics

    Dokl. Akad. Nauk SSSR, 300:2 (1988),  346–349
  16. Quantum current lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics

    TMF, 75:1 (1988),  3–17
  17. Complete integrability of dynamical systems associated with a problem of nonlinear vibrations of a longitudinally compressed beam

    Dokl. Akad. Nauk SSSR, 290:2 (1986),  304–308
  18. An asymptotic method for constructing implectic and recursion operators of completely integrable dynamic systems

    Dokl. Akad. Nauk SSSR, 287:6 (1986),  1312–1317
  19. A gradient algorithm for construction of criteria for integrability of nonlinear dynamical systems

    Dokl. Akad. Nauk SSSR, 287:4 (1986),  827–832
  20. Complete integrability of the nonlinear ito and Benney–Kaup systems: Gradient algorithm and lax representation

    TMF, 67:3 (1986),  410–425
  21. Bogolyubov generating functional method in statistical mechanics and the analog of the transformation to collective variables

    TMF, 66:3 (1986),  463–480
  22. The quantum Wigner operator and the method of Bogolyubov generating functionals in nonequilibrium statistical physics

    Dokl. Akad. Nauk SSSR, 285:6 (1985),  1365–1370
  23. Bogoliubov generating functional method in the statistical physic and the transformation analog to the collective variables in a great canonical ensemble

    Dokl. Akad. Nauk SSSR, 285:5 (1985),  1096–1101
  24. Dynamical systems of Neumann type and their complete integrability

    Dokl. Akad. Nauk SSSR, 285:4 (1985),  853–857
  25. Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability

    TMF, 65:2 (1985),  271–284
  26. Inverse periodic problem for the discrete approximation of the Schrödinger nonlinear equation

    Dokl. Akad. Nauk SSSR, 262:5 (1982),  1103–1108
  27. Discrete periodic problem for the modified nonlinear Korteweg–de Vries equation

    TMF, 50:1 (1982),  118–126
  28. Discrete periodic problem for a modified nonlinear Korteweg-de Vries equation

    Dokl. Akad. Nauk SSSR, 258:3 (1981),  575–580
  29. Almost periodic solutions of a modified nonlinear Schrödinger equation

    TMF, 47:3 (1981),  323–332
  30. Geometrical structure and Bäcklund transformations of nonlinear evolution equations possessing a Lax representation

    TMF, 46:3 (1981),  382–393
  31. On an analogue of the Bäcklund transformation for Riccati ordinary differential equations

    Dokl. Akad. Nauk SSSR, 253:2 (1980),  298–301
  32. On Riccati equations integrable in quadratures

    Dokl. Akad. Nauk SSSR, 251:5 (1980),  1072–1077


© Steklov Math. Inst. of RAS, 2024