RUS  ENG
Full version
PEOPLE

Kats Georgii Isaakovich

Publications in Math-Net.Ru

  1. Algebras with canonical generators and the structure of $C^*$-algebras of metabelian Lie groups

    Dokl. Akad. Nauk SSSR, 229:6 (1976),  1313–1316
  2. Nonunimodular ring groups and Hopf–von Neumann algebras

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  194–225
  3. Nonunimodular ring groups and Hopf–von Neumann algebras

    Dokl. Akad. Nauk SSSR, 211:5 (1973),  1031–1034
  4. Certain arithmetic properties of ring groups

    Funktsional. Anal. i Prilozhen., 6:2 (1972),  88–90
  5. Frobenius' theorem for functions of commutative and anticommutative arguments

    Funktsional. Anal. i Prilozhen., 5:1 (1971),  78–80
  6. Lie groups with commuting and anticommuting parameters

    Mat. Sb. (N.S.), 82(124):3(7) (1970),  343–359
  7. Extensions of groups to ring groups

    Mat. Sb. (N.S.), 76(118):3 (1968),  473–496
  8. Finite ring groups

    Tr. Mosk. Mat. Obs., 15 (1966),  224–261
  9. Annular groups and the principle of duality. II

    Tr. Mosk. Mat. Obs., 13 (1965),  84–113
  10. An example of a ring group of eighth-order

    Uspekhi Mat. Nauk, 20:5(125) (1965),  268–269
  11. Ring groups and the duality principle

    Tr. Mosk. Mat. Obs., 12 (1963),  259–301
  12. Finite rings groups

    Dokl. Akad. Nauk SSSR, 147:1 (1962),  21–24
  13. Representations of compact ring groups

    Dokl. Akad. Nauk SSSR, 145:5 (1962),  989–992
  14. Generalization of the group principle of duality

    Dokl. Akad. Nauk SSSR, 138:2 (1961),  275–278
  15. Generalized functions on a locally compact group and decompositions of unitary representations

    Tr. Mosk. Mat. Obs., 10 (1961),  3–40
  16. Functional closeness of completely regular spaces

    Dokl. Akad. Nauk SSSR, 120:5 (1958),  953–955
  17. Expansion in characteristic functions of self-adjoint operators

    Dokl. Akad. Nauk SSSR, 119:1 (1958),  19–22
  18. On completely regular spaces without complete uniform structures

    Uspekhi Mat. Nauk, 12:3(75) (1957),  329–332
  19. Isomorphic mapping of topological groups into a direct product of groups satisfying the first countability axiom

    Uspekhi Mat. Nauk, 8:6(58) (1953),  107–113


© Steklov Math. Inst. of RAS, 2024