|
|
Publications in Math-Net.Ru
-
Orthonormal systems of wavelet type based on atomic functions
Dokl. Akad. Nauk, 351:1 (1996), 16–18
-
Point-spread function identification in an image restoration problem
Dokl. Akad. Nauk, 348:3 (1996), 310–312
-
An algorithm for constructing wavelet systems for signal
processing
Dokl. Akad. Nauk, 346:1 (1996), 31–32
-
Synthesis of weight windows on the basis of atomic functions
Dokl. Akad. Nauk, 342:1 (1995), 29–31
-
Optimal finite windows for the reconstruction of images
Dokl. Akad. Nauk, 322:3 (1992), 498–500
-
Image reconstruction using deconvolution windows constructed on
the basis of atomic functions
Dokl. Akad. Nauk SSSR, 321:5 (1991), 938–940
-
The method of signal discretization and interpolation based on
atomic function theory
Dokl. Akad. Nauk SSSR, 321:5 (1991), 914–918
-
Application of atomic functions for the synthesis of digital
filters
Dokl. Akad. Nauk SSSR, 321:4 (1991), 697–700
-
A method for computing Fourier and Hartley transforms in a finite
digital computer system
Dokl. Akad. Nauk SSSR, 320:3 (1991), 577–580
-
On a number-theoretic method for the fast Fourier transform in the
Fermat ring
Dokl. Akad. Nauk SSSR, 320:2 (1991), 303–306
-
Utilization of atome functions in digital differentiator synthesis
Dokl. Akad. Nauk SSSR, 319:2 (1991), 347–351
-
Compactly supported solutions of functional-differential equations and their applications
Uspekhi Mat. Nauk, 45:1(271) (1990), 77–103
-
Construction of new windows for signal processing based on atomic
functions
Dokl. Akad. Nauk SSSR, 306:1 (1989), 78–81
-
Atomic functions and approximation theory
Trudy Mat. Inst. Steklov., 180 (1987), 186–187
-
On approximation by means of the function $\operatorname{up}(x)$
Dokl. Akad. Nauk SSSR, 233:2 (1977), 295–296
-
On the construction of solution structures for boundary value problems
Differ. Uravn., 13:4 (1977), 646–653
-
On approximation in the uniform metric, by functions of special form, of functions satisfying a boundary condition
Dokl. Akad. Nauk SSSR, 222:6 (1975), 1276–1278
© , 2024