RUS  ENG
Full version
PEOPLE

Rvachev Vladimir Alekseevich

Publications in Math-Net.Ru

  1. Orthonormal systems of wavelet type based on atomic functions

    Dokl. Akad. Nauk, 351:1 (1996),  16–18
  2. Point-spread function identification in an image restoration problem

    Dokl. Akad. Nauk, 348:3 (1996),  310–312
  3. An algorithm for constructing wavelet systems for signal processing

    Dokl. Akad. Nauk, 346:1 (1996),  31–32
  4. Synthesis of weight windows on the basis of atomic functions

    Dokl. Akad. Nauk, 342:1 (1995),  29–31
  5. Optimal finite windows for the reconstruction of images

    Dokl. Akad. Nauk, 322:3 (1992),  498–500
  6. Image reconstruction using deconvolution windows constructed on the basis of atomic functions

    Dokl. Akad. Nauk SSSR, 321:5 (1991),  938–940
  7. The method of signal discretization and interpolation based on atomic function theory

    Dokl. Akad. Nauk SSSR, 321:5 (1991),  914–918
  8. Application of atomic functions for the synthesis of digital filters

    Dokl. Akad. Nauk SSSR, 321:4 (1991),  697–700
  9. A method for computing Fourier and Hartley transforms in a finite digital computer system

    Dokl. Akad. Nauk SSSR, 320:3 (1991),  577–580
  10. On a number-theoretic method for the fast Fourier transform in the Fermat ring

    Dokl. Akad. Nauk SSSR, 320:2 (1991),  303–306
  11. Utilization of atome functions in digital differentiator synthesis

    Dokl. Akad. Nauk SSSR, 319:2 (1991),  347–351
  12. Compactly supported solutions of functional-differential equations and their applications

    Uspekhi Mat. Nauk, 45:1(271) (1990),  77–103
  13. Construction of new windows for signal processing based on atomic functions

    Dokl. Akad. Nauk SSSR, 306:1 (1989),  78–81
  14. Atomic functions and approximation theory

    Trudy Mat. Inst. Steklov., 180 (1987),  186–187
  15. On approximation by means of the function $\operatorname{up}(x)$

    Dokl. Akad. Nauk SSSR, 233:2 (1977),  295–296
  16. On the construction of solution structures for boundary value problems

    Differ. Uravn., 13:4 (1977),  646–653
  17. On approximation in the uniform metric, by functions of special form, of functions satisfying a boundary condition

    Dokl. Akad. Nauk SSSR, 222:6 (1975),  1276–1278


© Steklov Math. Inst. of RAS, 2024