Publications in Math-Net.Ru
-
Integrability of canonical affinor structures of homogeneous periodic $\Phi$-spaces
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 43–57
-
Geometry of homogeneous $\Phi$-spaces of order 5
Izv. Vyssh. Uchebn. Zaved. Mat., 2002, no. 5, 70–81
-
Geometry of special affinor structures of homogeneous $\Phi$-spaces of odd order
Izv. Vyssh. Uchebn. Zaved. Mat., 1994, no. 2, 84–86
-
Some classes of homogeneous $\Phi$-spaces of order 5
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 88–90
-
Induced connections on regular $\Phi$-spaces and their subspaces
Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 1, 72–80
-
Invariant structures on homogeneous $\Phi$-spaces of order 5
Uspekhi Mat. Nauk, 45:1(271) (1990), 169–170
-
$\Phi$-spaces and their subspaces that allow invariant framings
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 7, 46–52
© , 2025