|
|
Publications in Math-Net.Ru
-
Asymptotic Control Theory for a Closed String. II
Trudy Mat. Inst. Steklova, 321 (2023), 194–214
-
A number-theoretic part of control theory
Uspekhi Mat. Nauk, 77:2(464) (2022), 195–196
-
Control Theory, Integral Matrices, and Orthogonal Polynomials
Trudy Mat. Inst. Steklova, 315 (2021), 172–181
-
Asymptotic control theory for a system of linear oscillators
Mosc. Math. J., 16:3 (2016), 561–598
-
Feedback control for damping a system of linear oscillators
Avtomat. i Telemekh., 2015, no. 11, 3–17
-
Motion of a system of oscillators under the generalized dry friction control
Avtomat. i Telemekh., 2015, no. 5, 121–129
-
Damping of a system of linear oscillators using the generalized dry friction
Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015), 168–177
-
The structure of the attractor of shapes of reachable sets
Funktsional. Anal. i Prilozhen., 44:2 (2010), 74–81
-
Kalman Filter and Quantization
Probl. Peredachi Inf., 44:1 (2008), 59–79
-
Adaptive Design for Estimation of Unknown Parameters in Linear Systems
Probl. Peredachi Inf., 36:2 (2000), 38–68
-
Variance of the Number of Departed Messages in a Simple Queueing System
Probl. Peredachi Inf., 35:2 (1999), 100–106
-
Local asymptotic behavior of ellipsoids that bound attainability domains
Avtomat. i Telemekh., 1994, no. 12, 48–59
-
«Splitting times» for random fields
Teor. Veroyatnost. i Primenen., 23:2 (1978), 433–438
-
Complex multiplication in pro-abelian schemes
Funktsional. Anal. i Prilozhen., 9:3 (1975), 61–66
-
Schemes of CM type
Mat. Sb. (N.S.), 97(139):1(5) (1975), 110–145
-
Abelian extensions of fields of $CM$-type
Funktsional. Anal. i Prilozhen., 8:1 (1974), 16–24
-
A maximal “constructive” extension of a field of $CM$-type
Uspekhi Mat. Nauk, 28:3(171) (1973), 189–190
© , 2025