RUS  ENG
Full version
PEOPLE

Ovseevich Aleksandr Iosifovich

Publications in Math-Net.Ru

  1. Asymptotic Control Theory for a Closed String. II

    Trudy Mat. Inst. Steklova, 321 (2023),  194–214
  2. A number-theoretic part of control theory

    Uspekhi Mat. Nauk, 77:2(464) (2022),  195–196
  3. Control Theory, Integral Matrices, and Orthogonal Polynomials

    Trudy Mat. Inst. Steklova, 315 (2021),  172–181
  4. Asymptotic control theory for a system of linear oscillators

    Mosc. Math. J., 16:3 (2016),  561–598
  5. Feedback control for damping a system of linear oscillators

    Avtomat. i Telemekh., 2015, no. 11,  3–17
  6. Motion of a system of oscillators under the generalized dry friction control

    Avtomat. i Telemekh., 2015, no. 5,  121–129
  7. Damping of a system of linear oscillators using the generalized dry friction

    Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015),  168–177
  8. The structure of the attractor of shapes of reachable sets

    Funktsional. Anal. i Prilozhen., 44:2 (2010),  74–81
  9. Kalman Filter and Quantization

    Probl. Peredachi Inf., 44:1 (2008),  59–79
  10. Adaptive Design for Estimation of Unknown Parameters in Linear Systems

    Probl. Peredachi Inf., 36:2 (2000),  38–68
  11. Variance of the Number of Departed Messages in a Simple Queueing System

    Probl. Peredachi Inf., 35:2 (1999),  100–106
  12. Local asymptotic behavior of ellipsoids that bound attainability domains

    Avtomat. i Telemekh., 1994, no. 12,  48–59
  13. «Splitting times» for random fields

    Teor. Veroyatnost. i Primenen., 23:2 (1978),  433–438
  14. Complex multiplication in pro-abelian schemes

    Funktsional. Anal. i Prilozhen., 9:3 (1975),  61–66
  15. Schemes of CM type

    Mat. Sb. (N.S.), 97(139):1(5) (1975),  110–145
  16. Abelian extensions of fields of $CM$-type

    Funktsional. Anal. i Prilozhen., 8:1 (1974),  16–24
  17. A maximal “constructive” extension of a field of $CM$-type

    Uspekhi Mat. Nauk, 28:3(171) (1973),  189–190


© Steklov Math. Inst. of RAS, 2025