|
|
Publications in Math-Net.Ru
-
On Weil bundles
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023), 100–114
-
On the Lie algebra of derivations of the Jordan algebra of a bilinear symmetric form
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023), 94–99
-
On Weil algebras and Weil bundles
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021), 116–129
-
Semisymmetric horizontal lifts of linear connections from the base to the bundle of doubly covariant tensors
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 180 (2020), 96–102
-
Affine Transformations in Bundles
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 146 (2018), 48–88
-
Infinitesimal affine transformations of a Weil bundle of the second order with the complete lift connection
Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 12, 3–13
-
An estimate of the dimension of the Lie algebra of infinitesimal affine transformations in the tangent bundle $T(M)$ with complete lift connection
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:2 (2014), 43–54
-
Weil bundle over the tensor product of two algebras of dual numbers
University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4, 17–28
-
Holomorphic Affine Vector Fields on Weil Bundles
Mat. Zametki, 91:6 (2012), 896–899
-
Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection
Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9, 62–69
-
On Lie Algebras of Holomorphic Affine Vector Fields on Weil Bundles
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009), 171–177
-
On Lie algebras of affine vector fields of real realizations of holomorphic linear connections
Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4, 59–65
-
On real dimensions of lie algebras of holomorphic affine vector fields
Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 4, 54–67
-
Actions of automorphisms groups on Weil bundles
Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:1 (2005), 159–172
-
Affine transformations of a manifold with linear connection, and automorphisms of linear algebras
Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11, 77–81
-
Prolongations of tensor fields and connections to Weil bundles
Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 9, 64–72
-
Decomposition of a jet bundle of differentiable mappings into a Whitney sum of tangent bundles
Tr. Geom. Semin., 23 (1997), 139–148
-
Infinitesimal transformations of a linear frame bundle with a complete lift connection
Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 2, 53–58
-
The scientific heritage of I. P. Egorov (July 25, 1915–October 2, 1990)
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995), 5–36
-
On some geometric structures in a jet bundle of differentiable mappings
Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 7, 51–64
-
Infinitesimal affine transformations of a linear frame bundle with a complete lift connection
Tr. Geom. Semin., 22 (1994), 78–88
-
Extensions of Riemannian metrics from a differentiable manifold to its linear frame bundle
Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6, 93–102
-
A problem of I. P. Egorov in the theory of motions
Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 8, 34–39
-
Ivan Petrovich Egorov (on his seventy-fifth birthday)
Uspekhi Mat. Nauk, 45:4(274) (1990), 177–178
© , 2024