RUS  ENG
Full version
PEOPLE

Sultanov Adgam Yakhievich

Publications in Math-Net.Ru

  1. On Weil bundles

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023),  100–114
  2. On the Lie algebra of derivations of the Jordan algebra of a bilinear symmetric form

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222 (2023),  94–99
  3. On Weil algebras and Weil bundles

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 203 (2021),  116–129
  4. Semisymmetric horizontal lifts of linear connections from the base to the bundle of doubly covariant tensors

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 180 (2020),  96–102
  5. Affine Transformations in Bundles

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 146 (2018),  48–88
  6. Infinitesimal affine transformations of a Weil bundle of the second order with the complete lift connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 12,  3–13
  7. An estimate of the dimension of the Lie algebra of infinitesimal affine transformations in the tangent bundle $T(M)$ with complete lift connection

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:2 (2014),  43–54
  8. Weil bundle over the tensor product of two algebras of dual numbers

    University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 4,  17–28
  9. Holomorphic Affine Vector Fields on Weil Bundles

    Mat. Zametki, 91:6 (2012),  896–899
  10. Infinitesimal affine transformations of the second order tangent bundle with horizontal lift connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  62–69
  11. On Lie Algebras of Holomorphic Affine Vector Fields on Weil Bundles

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151:4 (2009),  171–177
  12. On Lie algebras of affine vector fields of real realizations of holomorphic linear connections

    Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 4,  59–65
  13. On real dimensions of lie algebras of holomorphic affine vector fields

    Izv. Vyssh. Uchebn. Zaved. Mat., 2007, no. 4,  54–67
  14. Actions of automorphisms groups on Weil bundles

    Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147:1 (2005),  159–172
  15. Affine transformations of a manifold with linear connection, and automorphisms of linear algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2003, no. 11,  77–81
  16. Prolongations of tensor fields and connections to Weil bundles

    Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 9,  64–72
  17. Decomposition of a jet bundle of differentiable mappings into a Whitney sum of tangent bundles

    Tr. Geom. Semin., 23 (1997),  139–148
  18. Infinitesimal transformations of a linear frame bundle with a complete lift connection

    Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 2,  53–58
  19. The scientific heritage of I. P. Egorov (July 25, 1915–October 2, 1990)

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 8 (1995),  5–36
  20. On some geometric structures in a jet bundle of differentiable mappings

    Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 7,  51–64
  21. Infinitesimal affine transformations of a linear frame bundle with a complete lift connection

    Tr. Geom. Semin., 22 (1994),  78–88
  22. Extensions of Riemannian metrics from a differentiable manifold to its linear frame bundle

    Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 6,  93–102
  23. A problem of I. P. Egorov in the theory of motions

    Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 8,  34–39

  24. Ivan Petrovich Egorov (on his seventy-fifth birthday)

    Uspekhi Mat. Nauk, 45:4(274) (1990),  177–178


© Steklov Math. Inst. of RAS, 2024