RUS  ENG
Full version
PEOPLE

Mirzoev Aleksandr Aminulaevich

Publications in Math-Net.Ru

  1. The comparative results of the thermodynamic and first-principle modeling of disordered solutions of the Fe–V system

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:4 (2023),  68–76
  2. A simple analytical model of thermal fields to develop digital twins in industrial arc welding

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023),  76–86
  3. Molecular dynamic modeling of structure and properties of SiO$_{2}$ glass substrate in a broad temperature range

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 14:4 (2022),  65–73
  4. Ab initio simulation of dissolution energy and bond energy of hydrogen with 3$sp$, 3$d$, and 4$d$ impurities in bcc iron

    Fizika Tverdogo Tela, 63:7 (2021),  830–833
  5. Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:4 (2021),  57–68
  6. Short-range order in Fe-Cr alloys: simulation by the lattice Monte Carlo method

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:2 (2019),  51–57
  7. Molecular dynamics simulation of carbon clusterization under martensite tempering

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:1 (2019),  67–74
  8. Molecular-dynamics simulation of the influence of silicon on the ordering of carbon in the martensite lattice

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 44:3 (2018),  9–16
  9. Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018),  78–87
  10. Ab initio simulation of dissolution energy and carbon activity in fcc Fe

    Fizika Tverdogo Tela, 59:7 (2017),  1255–1260
  11. Chemical potentials of tetragonal ferrite and its equilibrium with $\gamma$-phase in steels

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:4 (2017),  66–75
  12. Dilatometric study of critical points of 13X11N2V2MF steel

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:3 (2017),  66–71
  13. Determining the optimal modeling parameters for maximum precise calculations of energy in BCC-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:4 (2016),  63–69
  14. Martensite tempering during fast heating

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 8:1 (2016),  61–65
  15. Carbon impurities in paramagnetic FCC iron: ab initio simulation of energy parameters

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:2 (2015),  56–63
  16. DFT modelling of interaction of hydrogen with BBC iron vacancies

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015),  48–56
  17. First principles calculations of the interaction energies of carbon atoms in the antiferromagnetic double-layer FCC-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:4 (2014),  53–58
  18. Ab-initio simulation of dissoilution energy of carbon atom in the paramagnetic state of FCC-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:3 (2014),  86–91
  19. Elaboration of atomic model for ab initio calculation of the ferrite/cementite interface

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 6:2 (2014),  49–55
  20. Ab-initio simulation of influence of short-range ordering carbon impurities on the energy of their dissolution in the FCC-iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:2 (2013),  108–116
  21. Ineratomic potential for iron-carbon system and martencitic phase transition problem

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013),  114–118
  22. Ab initio modeling of the grain boundary formation energy in BCC iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013),  76–81
  23. The influence of effective pair potential hybridization on the liquid iron properties

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 7,  120–129
  24. On equilibrium vacancy concentration in iron-hydrogen alloys

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6,  97–104
  25. Ab initio modeling of vacancy-point defects interaction in BCC iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4,  114–119
  26. The application of Schommers scheme for the calculation of effective pair potential in NPT ensemble

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4,  106–113
  27. First principles of calculation of the energy of mixing and magnetic moments of components of alloys $\mathrm{Fe}$$\mathrm{Mn}$, $\mathrm{Fe}$$\mathrm{Cr}$ and $\mathrm{Fe}$$\mathrm{Ni}$$\mathrm{C}$ with BCC and FCC lattices

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4,  84–94
  28. Influence of impurities on hydrogen dissolution in BCC iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4,  77–83
  29. Water self-diffusion coefficient calculated by gromacs software

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4,  56–60
  30. Selection of optimal parameters for formation the most accurate model of BCC iron

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2010, no. 2,  97–101
  31. Application of Green–Kubo method to liquid iron shear viscosity calculation

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2010, no. 2,  76–78
  32. Liquid iron viscosity: molecular-dynamics simulation with an embedded-atom potential

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2009, no. 1,  79–83
  33. Local electronic and atomic structures correlations in liquid alloys with strong chemical interactions

    Dokl. Akad. Nauk, 349:5 (1996),  615–617
  34. Green's function of liquid metals

    TMF, 41:3 (1979),  378–387

  35. Yuriy Izmaylov - to the 70th birthday anniversary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:3 (2021),  79–82
  36. To the 70th anniversary of Valery Beskachko

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019),  68–70


© Steklov Math. Inst. of RAS, 2024