RUS  ENG
Full version
PEOPLE

Maistrovskii G D

Publications in Math-Net.Ru

  1. Selection-Induced Convergence to Equilibrium in a Single-Locus Autosomal Population

    Probl. Peredachi Inf., 16:1 (1980),  93–104
  2. A locally quadratically converging method of conditional minimization using a modified Lagrangian

    Zh. Vychisl. Mat. Mat. Fiz., 20:1 (1980),  27–37
  3. A gradient method for the modified Lagrange function

    Zh. Vychisl. Mat. Mat. Fiz., 19:1 (1979),  56–69
  4. A method of conjugate gradients in the problem of conditional minimization

    Zh. Vychisl. Mat. Mat. Fiz., 17:2 (1977),  498–501
  5. Convergence to equilibrium under the action of selection in a single locus population

    Dokl. Akad. Nauk SSSR, 226:1 (1976),  58–60
  6. The rate of convergence of the method of steepest descent in the problem of conditional minimization

    Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975),  844–859
  7. On the theory of conditional minimization

    Dokl. Akad. Nauk SSSR, 212:4 (1973),  818–821
  8. On the optimality of Newton’s method

    Dokl. Akad. Nauk SSSR, 204:6 (1972),  1313–1315
  9. The convergence of the conjugate gradients

    Zh. Vychisl. Mat. Mat. Fiz., 11:5 (1971),  1291–1294
  10. The stability of relaxation processes

    Dokl. Akad. Nauk SSSR, 191:1 (1970),  22–24
  11. The general theory of relaxation processes for convex functionals

    Uspekhi Mat. Nauk, 25:1(151) (1970),  57–112
  12. A local relaxation theory for nonlinear equations

    Dokl. Akad. Nauk SSSR, 177:1 (1967),  37–39
  13. A relaxation theory of Jacobi's methods

    Dokl. Akad. Nauk SSSR, 176:5 (1967),  1004–1006
  14. Conditions for the applicability of a class of computational algorithms

    Dokl. Akad. Nauk SSSR, 172:3 (1967),  529–532


© Steklov Math. Inst. of RAS, 2024