|
|
Publications in Math-Net.Ru
-
About solving the Cauchy problem for secondorder elliptic equations in a planar domain using the Cauchy integral operator
Sib. Èlektron. Mat. Izv., 7 (2010), 173–177
-
The Carleman formula for the Maxwell’s equations on a plane
Sib. Èlektron. Mat. Izv., 5 (2008), 448–455
-
The Carleman formula for the Helmholtz equation on the plane
Sibirsk. Mat. Zh., 47:3 (2006), 518–526
-
Uniqueness in one inverse problem for the elasticity system
Sibirsk. Mat. Zh., 45:4 (2004), 747–757
-
Two methods for the inverse problem of memory reconstruction
Sibirsk. Mat. Zh., 41:4 (2000), 767–776
-
Inverse problems of memory reconstruction
Dokl. Akad. Nauk, 354:6 (1997), 727–729
-
Global convergence of the Newton method in inverse problems of memory reconstruction
Sibirsk. Mat. Zh., 38:5 (1997), 1018–1033
-
Stability of memory reconstruction from the Dirichlet–Neumann operator
Sibirsk. Mat. Zh., 38:4 (1997), 738–749
-
The Cauchy problem for $A$-harmonic functions
Dokl. Akad. Nauk, 349:5 (1996), 586–587
-
Uniqueness in one inverse problem of memory reconstruction
Sibirsk. Mat. Zh., 37:3 (1996), 526–533
-
Ill-posed problems, number theory and tomography
Sibirsk. Mat. Zh., 33:3 (1992), 26–41
-
Elliptic systems of Beltrami type and tomography problems
Dokl. Akad. Nauk SSSR, 315:1 (1990), 15–19
-
Multidimensional inverse problems of spectral analysis
Dokl. Akad. Nauk SSSR, 284:1 (1985), 21–24
-
Carleman estimates for Volterra operators and the uniqueness of inverse problems
Sibirsk. Mat. Zh., 25:1 (1984), 53–60
-
On the stability of difference schemes for ill-posed problems
Dokl. Akad. Nauk SSSR, 270:1 (1983), 26–28
-
Global uniqueness of a class of multidimensional inverse problems
Dokl. Akad. Nauk SSSR, 260:2 (1981), 269–272
-
The inverse scattering problem in the Kirchhoff approximation
Dokl. Akad. Nauk SSSR, 254:6 (1980), 1292–1294
-
Volterra operator equations in Banach space scales
Dokl. Akad. Nauk SSSR, 242:2 (1978), 272–275
-
Solution of an inverse problem for an elastic wave equation by the method of spherical means
Sibirsk. Mat. Zh., 19:4 (1978), 749–758
-
On two inverse problems for differential equations
Dokl. Akad. Nauk SSSR, 229:4 (1976), 785–786
-
On a class of integral equations of the first kind
Dokl. Akad. Nauk SSSR, 215:1 (1974), 15–16
-
On a class of problems in integral geometry
Dokl. Akad. Nauk SSSR, 210:3 (1973), 523–524
-
A class of operator equations of the first kind
Funktsional. Anal. i Prilozhen., 7:4 (1973), 44–53
-
On a class of Volterra equations of the first kind
Funktsional. Anal. i Prilozhen., 6:1 (1972), 1–9
-
Certain problems of integral geometry
Sibirsk. Mat. Zh., 13:1 (1972), 34–42
-
Mikhail Mikhailovich Lavrent'ev (on the occasion of his seventieth birthday)
Sib. Zh. Ind. Mat., 5:2 (2002), 3–6
© , 2024