RUS  ENG
Full version
PEOPLE

Teterin Yury Geliontinovich

Publications in Math-Net.Ru

  1. On computer-based calculations for transmetabelian groups of exponent 16, 25 and 27

    Zap. Nauchn. Sem. POMI, 236 (1997),  162–165
  2. Computational Group Theory in St. Petersburg

    Zap. Nauchn. Sem. POMI, 236 (1997),  42–49
  3. Speeding up an algorithm to construct the Hall collection formula

    Zap. Nauchn. Sem. POMI, 227 (1995),  106–112
  4. Spinor norms of local autometries of generalized quadratic lattices

    Zap. Nauchn. Sem. POMI, 211 (1994),  161–173
  5. On the notion of $cq$-genus of quadratic forms

    Zap. Nauchn. Sem. LOMI, 160 (1987),  170–181
  6. On the number of points of a translated lattice in an area on a multidimentional ellipsoid

    Zap. Nauchn. Sem. LOMI, 151 (1986),  176–183
  7. Ergodic properties of operators on the integral points of ellipsoids

    Zap. Nauchn. Sem. LOMI, 151 (1986),  159–175
  8. The action of the class-group on the representations of numbers by a ternary quadratib form. The Siegel and Kneser–Hsia–Peters formulae

    Zap. Nauchn. Sem. LOMI, 151 (1986),  141–158
  9. The representations of numbers by spinor genera of translated lattices

    Zap. Nauchn. Sem. LOMI, 151 (1986),  135–140
  10. An asymptotic formula for the number of representations by totally positive ternary quadratic forms

    Izv. Akad. Nauk SSSR Ser. Mat., 49:2 (1985),  393–426
  11. Representation of numbers by ternary quadratic forms over maximal orders of algebraic number fields

    Dokl. Akad. Nauk SSSR, 273:1 (1983),  58–60
  12. On representation of algebraic integers by ternary quadratic forms

    Zap. Nauchn. Sem. LOMI, 121 (1983),  157–168
  13. On representation of integers by positive ternary quadratic forms

    Zap. Nauchn. Sem. LOMI, 121 (1983),  117–156
  14. On the representation of large square divisible integers by positive ternare quadratic form

    Zap. Nauchn. Sem. LOMI, 106 (1981),  137–157

  15. A. V. Malyshev, scientist and teacher

    Zap. Nauchn. Sem. POMI, 211 (1994),  7–13


© Steklov Math. Inst. of RAS, 2025